Name: \qquad Block: \qquad

Dilations

- In a dilation, we are just \qquad the image.
- Dilations are NOT isometric.
- When we dilate an image, the side lengths change, the angles do not.
- This is the one transformation where the pre- image and image are similar, but not congruent.

Scale Factor:

- We use "k" to represent scale factor.
- We multiply by k to find the image.

1. Determine if the scale factor represents a reduction, enlargement, or congruence.
a. $k=1 / 3$
b. $k=2.5$
c. $k=50 \%$
d. $k=200 \%$
2. Dilate the image by $\mathrm{k}=2$.

$$
\begin{aligned}
& A(-2,4) \rightarrow A^{\prime} \\
& B(0,-8) \rightarrow B^{\prime} \\
& C(-3,5) \rightarrow C^{\prime}
\end{aligned}
$$

4. Dilate the image by $\mathrm{k}=2$.

5. Dilate the image by $k=1 / 2$.

$$
\begin{aligned}
& D(1,2) \rightarrow D^{\prime} \\
& E(-3,-5) \rightarrow E^{\prime} \\
& F(4,-1) \rightarrow F^{\prime}
\end{aligned}
$$

5. Dilate the image by $\mathrm{k}=0.5$

GSE Geometry
6. Dilate the image by $\mathrm{k}=1$

Unit 1 - Transformations
1.7 Practice
7. Dilate the image by $k=2.5$

Find the scale factor of the dilation.
8.

10. From $A(-1,0.5), B(-1,1), C(1.5,0)$

$$
A^{\prime}(-3,1.5), B^{\prime}(-3,3), C^{\prime}(4.5,0)
$$

9.

11. From $L(8,8), M(-12,0), N(-4,-4), P(8,4)$ to

$$
L^{\prime}(2,2), M^{\prime}(-3,0), N^{\prime}(-1,-1), P^{\prime}(2,1)
$$

