Proving the Law of Sines



Ambiguous Case

- Occurs when you are given two consecutive sides and an angle. (SSA)
- 3 cases: no triangles, one triangle, two triangles.

No triangles.

- When the given angle is obtuse the side opposite that angle must be the largest side.
- When the given angle is acute, the side opposite that angle must be greater than or equal to the altitude.
- Domain error in the calculator

1. 
$$a = 19, b = 17, B = 93^{\circ}$$

2. 
$$A = 57^{\circ}, a = 11, b = 19$$

One triangle.

- When the given angle is obtuse and the side opposite that angle is the longest side.
- When the given angle is acute and the side opposite that angle is equal to the length of the altitude. (right triangle)
- When the side opposite of the acute angle is longer than the altitude.

3.  $a = 19, b = 17, A = 93^{\circ}$ 4.  $A = 30^{\circ}, a = 13, c = 26$ 

Two Triangles

• When the given <u>angle</u> is acute the side opposite that angle is less than the other given side.

5.  $a = 26, b = 29, A = 58^{\circ}$ 

6.  $C = 71^{\circ}, c = 24, a = 25$ 

| Practice                                          |                                                  |
|---------------------------------------------------|--------------------------------------------------|
| 1. $A = 30^{\circ}$ , $a = 12$ , $B = 45^{\circ}$ | 2. $A = 36^{\circ}, a = 10, b = 4$               |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
| $2 4 - 50^{\circ} a - 45 b - 120$                 | $4 - 04^{0} - 146 - 146$                         |
| 3. A - 30, u - 4.5, v - 12.0                      | 4. $A = 94$ , $a = 14.0, b = 14.0$               |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
| 5. $B = 36^{\circ}, b = 19, c = 30.$              | 6. $A = 107.2^{\circ}$ , $a = 17.2$ , $c = 12.2$ |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |
|                                                   |                                                  |

Proving the Law of Cosines



## Area of a Triangle



Use trig ratios.

Solve for h.

Substitute for h.

Ex.1 Find the area and perimeter of  $\triangle ABC$ .



Ex.2 Find the area of parallelogram *ABCD*.





