Proving the Law of Sines
Name: \qquad Block: \qquad

Ambiguous Case

- Occurs when you are given two consecutive sides and an angle. (SSA)
- 3 cases: no triangles, one triangle, two triangles.

No triangles.

- When the given angle is obtuse the side opposite that angle must be the largest side.
- When the given angle is acute, the side opposite that angle must be greater than or equal to the altitude.
- Domain error in the calculator

1. $a=19, b=17, B=93^{\circ}$
2. $A=57^{\circ}, a=11, b=19$

One triangle.

- When the given angle is obtuse and the side opposite that angle is the longest side.
- When the given angle is acute and the side opposite that angle is equal to the length of the altitude. (right triangle)
- When the side opposite of the acute angle is longer than the altitude.

3. $a=19, b=17, A=93^{\circ}$
4. $A=30^{\circ}, a=13, c=26$

Two Triangles

- When the given angle is acute the side opposite that angle is less than the other given side.

5. $a=26, b=29, A=58^{\circ}$
6. $C=71^{\circ}, c=24, a=25$

Practice

1. $A=30^{\circ}, a=12, B=45^{\circ} \quad |$| 2. $A=36^{\circ}, a=10, b=4$ |
| :--- | :--- |
2. $A=58^{\circ}, a=4.5, b=12.8 \quad$ 4. $A=94^{\circ}, a=14.6, b=14.6$
3. $B=36^{\circ}, b=19, c=30$.
4. $A=107.2^{\circ}, a=17.2, c=12.2$

Proving the Law of Cosines

Area of a Triangle

$A=\frac{1}{2} b h, w h e r e ~ b$ is the base and h is the hegiht

Use trig ratios.
Solve for h.

Substitute for h.

Ex. 1 Find the area and perimeter of $\triangle A B C$.

Ex. 2 Find the area of parallelogram $A B C D$.

Practice Finding Area of Triangles
Name: \qquad Block: \qquad
Find the area of the triangles.

1.	2.
3.	4.
5.	6.
7.	8.

Law of Sines and Cosines Review.

Name:
Block:
2. Find a.

4. Find $\angle A$.

6. Find $\angle B$

