\qquad

1. Each week, Tim wants to increase the number of sit-ups he does daily by 2 sit-ups . The first week, he does 15 sit-ups each day. Write an explicit function in the form $f(n)=m n+b$ to represent the number of sit-ups, $\mathrm{f}(\mathrm{n})$, Tim does daily in week n .	2. An amount of $\$ 1,000$ is deposited into a bank account that pays 4% interest compounded once a year. If there are no other withdrawals or deposits, what will be the balance of the account after 3 years?	3. The temperature of a large tub of water that is currently at 100° decreases by about 10% each hour. Write an explicit function in the form $f(n)=a \cdot b n$ to represent the temperature, $\mathrm{f}(\mathrm{n})$, of the tub of water in n hours.
4. A population of bacteria begins with 2 bacteria on the first day and triples every day. The number of bacteria after x days can be represented by the function $P(x)=2(3)^{x} .$	a. What is the common ratio of the function? b. What is a_{1} of the function? c. Write a recursive formula for the bacteria growth. d. What is the bacteria population after 10 days?	5. The function $f(n)=-(1-4 n)$ represents a sequence. Create a table showing the first five terms in the sequence. Identify the domain and range of the function
6. Consider the graph of $f(x)=2^{x}$. Exponential Function $f(x)=2^{x}$ $f(x)$	Domain: Range: x-intercept: y-intercept: Increasing: Decreasing: Asymptote:	7. Graph $f(x)=4^{x}-5$

1. Which function represents the sequence

n	1	2	3	4	5	\ldots
a_{n}	3	10	17	24	31	\ldots

A. $\mathrm{f}(\mathrm{n})=\mathrm{n}+3$
B. $\mathrm{f}(\mathrm{n})=7 \mathrm{n}-4$
C. $f(n)=3 n+7$
D. $f(n)=n+7$
2. Which function represents this sequence?

n	1	2	3	4	5	\ldots
a_{n}	6	18	54	162	486	\ldots

A. $f(n)=3^{n-1}$
B. $f(n)=6^{n-1}$
C. $f(n)=3\left(6^{n-1}\right)$
D. $f(n)=6\left(3^{n-1}\right)$
3. The points $(0,1),(1,5),(2,25)$, and $(3,125)$ are on the graph of a function. Which equation represents that function?
A. $f(x)=2^{x}$
B. $f(x)=3^{x}$
C. $f(x)=4^{x}$
D. $f(x)=5^{x}$
4. A certain population of bacteria has an average growth rate of 2%. The formula for the growth of the bacteria's population is $A=P_{0} \cdot 1.02^{t}$, where P_{0} is the original population and t is the time in hours.

If you begin with 200 bacteria, about how many bacteria will there be after 100 hours
A. 7
B. 272
C. 1,478
D. 20,000
5. Look at the sequence in this table .

n	1	2	3	4	5	\ldots
a_{n}	-1	1	3	5	7	\ldots

Which function represents the sequence?
A. $a_{n}=a_{n-1}+1$
B. $a_{n}=a_{n-1}+2$
C. $a_{n}=2 a_{n-1}-1$
D. $a_{n}=2 a_{n-1}-3$
5. \qquad
6. Consider this pattern .

Which function represents the sequence that represents the pattern?
A. $a_{n}=a_{n-1}-3$
B. $a_{n}=a_{n-1}+3$
C. $a_{n}=3 a_{n-1}-3$
D. $a_{n}=3 a_{n-1}+3$
7. Which explicit formula describes the pattern in this table?
A. $d=3.14 \cdot C$
B. $3.14 \cdot C=d$
C. $31.4 \cdot 10=C$
D. $C=3.14 \cdot d$

d	c
2	6.28
3	9.42
5	15.70
10	31.40

8. Consider this pattern .

Which function represents the sequence that represents the pattern?
A. $a_{n}=(4)^{n-1}$
B. $a_{n}=(4)^{a_{n}-1}$
C. $a_{n}=\left(a_{n}\right)(4)^{n-1}$
D. $a_{n}=\left(a_{n}\right)^{4}$
9. Which function is modeled in this table?
A. $1,250(0.80)^{x}$

B . $1,250\left(0.20^{x}\right)$
C. $1,000(0.80)^{x}$
D. $1,000(0.20)^{x}$

x	$f(x)$
1	1000
2	800
3	640
4	512

9. \qquad

