\qquad
\qquad
In Exercises 1-10, Determine if the sequence is arithmetic, geometric, or other. If applicable, state the common ratio or difference. 1. -9, -109, -209, -309, ...
6. $1,1 / 2,0,-1 / 2, \ldots$.
2. $28,18,8,-2, \ldots$
3. $28,26,24,22, \ldots$
8. $-1,6,-36,216, \ldots$
4. $-16,-6,4,14, \ldots$
5. $-8,-4,0,4, \ldots$
9. $-1,-5,-25,-125, \ldots$
10. $-3,-1,-1 / 3,-1 / 9, \ldots$

In Exercises 11-14, Find the common difference, the term named in the problem, and the explicit formula
11. 17, 11, 5, -1, ...

Find a_{39}
13. $-40,-47,-54,-61, \ldots$

Find a_{10}
12. $5,-5,-15,-25, \ldots$

Find a_{20}
14. $29,38,47,56, \ldots$

Find a_{29}

In Exercises 15-18, Find the common ratio, the term named in the problem, and the explicit formula.
15. 4, 12, 36, 108, ...

Find a_{9}
$16.54,18,6,2, \ldots$
Find a_{5}
17. $-3,9,-27,81, \ldots$

Find a_{10}
18. $-4,8,-16,32, \ldots$

Find a_{11}

In Exercises 19-28, Identify the following as increasing linear, decreasing linear, exponential growth, exponential decay, increasing quadratic or decreasing quadratic.
19.

20.

21.

24.

25.

26.

22.

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	100	10	1	$\frac{1}{10}$	$\frac{1}{100}$

23.

x	-1	0	1	2	3
y	1	4	7	10	13

27.

x	-1	0	1	2	3
y	22	17	12	7	2

28.

\boldsymbol{x}	-1	0	1	2	3
\boldsymbol{y}	$\frac{1}{3}$	1	3	9	27

In Exercises 29-42, Determine if the equation is increasing linear, decreasing linear, exponential growth, exponential decay, increasing quadratic or decreasing quadratic.
29. $y=\left(\frac{5}{2}\right)^{x}$
30. $y=-2 x-10$
31. $y=4 x-3$
32. $y=3\left(\frac{1}{4}\right)^{x}$
33. $y=(x+2)^{2}$
34. $y=2 \cdot 5^{x}$
35. $y=-6 x^{2}-5 x+4$
36. $y=\frac{1}{4} \cdot 3^{x}$
37. $y=2 x^{2}+5 x-7$
38. $y=\frac{2}{5} \cdot 9^{x}$
39. $y=2(0.1)^{x}$
40. $y=-4 x+7$
41. $y=-(x-3)^{2}$
42. $y=\frac{1}{7} \cdot\left(\frac{3}{8}\right)^{x}$

Exercises 43-50, Exponential word problems.

43. Rachel invested $\$ 4000$ into an account that has a 3.5% annual interest rate. Write an equation best describes this investment after \dagger years?
44. Damian invested $\$ 5,000$ into an account that has an interest rate of 3% and is compounded monthly. How much money will he have in 6 years?
45. Tommy bought a new sports car for $\$ 50,000$. It depreciates annually by 20% per year. Write an exponential function that describes the above data. Then find out how much will the car be worth in 5 years.
46. A coffee is sitting on Mr. Hunt's desk cooling. It cools according to the function $T=75(0.98)^{x}+20$ where is x is the time in minutes and T is the temperature in degrees.
A) What is the initial temperature of the coffee?
B) What is the temperature after 10 minutes?
47. Tara earns $\$ 42,000$ during the first year at her job. Each year after the first year, she will receive a raise of 7%.
a) Write the equation that gives Tara's salary as a function of the number of years, x, after she started her job.
b) Then use the function to determine Tara's salary after 4 years.
48. From 1990 to 2000, the population of California can be modeled by $P=29,816,591(1.0128)^{t}$ where (t) is the number of years since 1990. Estimate the population in 2007.
49. A cup of green tea contains 35 milligrams of caffeine. The average teen can eliminate approximately 12.5% of the caffeine from their system per hour.
a) Write an exponential function to represent the amount of caffeine remaining after drinking a cup of green tea.
b) Estimate the amount of caffeine in a teenager's body 3 hours after drinking a cup of green tea.

Exercises 50-53, Graph the following exponential equation. Identify the domain, range, and asymptote.
50. $f(x)=2 x+2$

Domain:
Asymptote:
Range:

x	y
-2	
-1	
0	
1	
2	
3	

51. $f(x)=\left(\frac{1}{2}\right)^{x}-3$

Domain:
Range:
Asymptote:

x	y
-2	
-1	
0	
1	
2	
3	

52. $f(x)=3^{x-1}$

Domain:
Asymptote:

x	y
-2	
-1	
0	
1	
2	
3	

53. $f(x)=3\left(\frac{2}{3}\right)^{x}+1$

Domain:
Asymptote:

$$
\begin{array}{c|c}
x & y \\
\hline-2 & \\
\hline-1 & \\
\hline 0 & \\
\hline 1 & \\
\hline 2 & \\
\hline 3 &
\end{array}
$$

Exercise 54, Determine the following characteristics of the exponential equation.
a) Identify the exponential function as growth or decay: $\quad y=\left(\frac{1}{4}\right)^{x}$
b) Identify the common ratio:
c) Identify the y-intercept:
d) State the equation of the asymptote:
e) State the domain:

x	Y
-2	16
-1	4
0	1
1	$1 / 4$
2	$1 / 16$
3	$1 / 64$

f) State the range:
g) $f(-3)=$
h) $f(0)=$
i) $f(2)=$

