Two-way Frequency Tables

- two way frequency table- a table that divides responses into categories.
- Joint relative frequency- the number of times a specific response is given divided by the sample.
- Marginal relative frequency- the total number of times a specific response is given divided by the sample.
- Conditional relative frequency- the percent of a joint frequency compared to the subtotal.
* often indicated by the word "given.

Ex. 1 constructing tables.

	High School Diploma	Bachelor's Degree	Master's/ Doctoral Degree	Total
Male	16	46	3	65
Female	12	51	3	66
Total	28	97	6	13

a) find the joint relative frequency of males who have a bachelors degree.

$$
\frac{46}{131}=.35=35 \%
$$

b) find the marginal frequency of people with a masters/doctors degree.

$$
\frac{6}{131}=.05=5 \%
$$

c) given someone is male, what's the probability of having a high school diploma?

$$
\frac{16}{65}=.25=25 \%
$$

Ex. 2 two way relative frequency tables

| What is your favorite sport to watch on | | | |
| :---: | :---: | :---: | :---: | :---: |
| television? | | | |

a) what percent of girls prefer basketball?

$$
\frac{16}{73}=.22=22 \%
$$

b) what is the probability of liking football?

$$
\frac{52}{150}=.35=35 \%
$$

c) what's the probability of liking basketball or baseball?

$$
\frac{15}{150}=.65=65
$$

Measures of center

- is a single measure used to represent the middle value.

Median- is the middle most number Mean- average number, it is the sum divided by the number of values.

$$
\bar{x}=\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n}
$$

Mode- the number(s) that appear most often. Maximum- the largest value in a data set. Minimum- the smallest number in a data set.

Measures of spread

- Numbers to describe how far apart certain key values are from each other.
First quartile- median of lower half of data.
Second quartile- median.
Third quartile- median of upper half of data. range- the difference from the minimum to the maximum.
rante-max_min

1 beng - -
Interquartile range- the difference between quartile 1 and quartile 3.

$$
I Q R=Q_{3}-Q_{1}
$$

Mean absolute deviation- the average absolute value of the difference between each data set and mean.

$$
\frac{\sum_{t=1}^{n}\left|x_{i}-\bar{x}\right|}{n}
$$

Ex. 1 The April high temperatures for seven years are: 77, 86, 84, 96, 90, 81, and 86.

$m \cdot n$

$$
\left.\begin{array}{rlrl}
\bar{x} & =\frac{77+80+81+84+86+90+93}{7} & \\
\begin{array}{rlrl}
\bar{x} & =84.4 & I Q R & =Q_{3}-Q_{1} \\
\text { range } & =\text { max -min } \\
& =93-77 \\
& =16
\end{array} & & I Q R & =90-80
\end{array}\right]
$$

$$
\begin{aligned}
& \frac{\sum_{t=1}^{n}\left|x_{i}-\bar{x}\right|}{n} \\
& |77-84.4|=7.4 \\
& |80-84.4|=4.4 \\
& |8|-84.4 \mid=3.4 \\
& |84-84.4|=0.4 \\
& |86-84.4|=1.6 \\
& \begin{array}{ll}
|90-84.4| & =5.6 \\
|93-84.4| & =+8.6
\end{array} \quad \frac{31.4}{7}=4.5 \\
& 31.4 \\
& M A D=4.5
\end{aligned}
$$

Outliers

- Data values that are much less/greater than most of the data set.
extreme values- are values that appear to be outliers.

Steps to determine if a value is an outlier.

- A data value is an outlier if it is less than...

$$
Q_{1}-I Q R(1.5)
$$

- A data value is an outlier if it is greater than

$$
Q_{3}+I Q R(1.5)
$$

Ex. 1 list of salaries in thousands:

$$
\begin{aligned}
& \begin{array}{cc}
25,30,35, \mid 35,35,40,40, & 40,45,45, \mid 50,60, \sqrt{150} \\
35 & Q_{2} \\
47.5 & \text { outlier }
\end{array} \\
& Q_{1} \quad Q_{3} \\
& I Q R=Q_{3}-Q_{1} \quad Q_{1}-I Q R(1.5) \\
& =47.5-35 \quad 35-(12.5)(1.5) \\
& I_{Q R}=12.5 \quad 16.25 \\
& Q_{2}=40 \\
& Q_{3}+\operatorname{IQR}(1.5) \\
& \bar{x}=48.5 \quad 47.5+(12.5)(1.5) \\
& 66.25
\end{aligned}
$$

A when there's an outlier, use the median as the measure of center. \& Outliers affect the mean and range.

Graphs

Box plot- is a graph that shows the minimum, maximum, Q1, Q2, and Q3.
Dot plot- is a graph that uses dots to show the number of times each value in a data set appears in the data set.
Histogram- a bar graph which shows frequency distribution.

1. Divide the range into even sections.
2. Tally each frequency.

Shape

Uniform- data is evenly distributed.

Symmetric-data is centered toward the middle. Also known as normal distribution.

Skewed to the right- describes where the outlier is pulling the data.

Skewed to the left- the outlier(s) is pulling the data left.

Ex. 1 Find any outlier then create a dot plot, box plot, and histogram. Then describe the shape.

$$
\begin{array}{ll}
\min 2,2,9,10,10,11,11, & 11,12 \\
5.5 & Q_{2}
\end{array}
$$

$$
Q_{3}+I Q R(1.5)
$$

$$
11+5.5(1.5)
$$

$$
19.25
$$

\qquad
\qquad
\qquad
Scatter Plots and Trend Lines Notes

Correlation is one way to describe the relationship between two sets of data. Positive Correlation

Data: As one set increases, the other set increases.
Graph: The graph goes up from left to right.

Example	Correlation	Correlation Coefficient (estimated)
1st graph above	strong positive	+1
2nd graph above	strong negative	-1
3rd graph above	no correlation	0
4th graph beside	weak positive	+0.5
5th graph beside	weak negative	-0.5

Estimate the correlation coefficient for each scatter plot as $\mathbf{- 1 ,} \mathbf{- 0 . 5 , 0 , 0 . 5}$, or 1 .
1.

$\frac{\text { No correlation }}{r=0}$

$\frac{\text { negative correlation }}{r=-.8}$
\qquad
\qquad
\qquad
Fitting a Linear Model to Data Notes
The table shows the relationship between two variables. Identify the correlation, sketch a line of fit, and find its equation.

\boldsymbol{x}	1	2	3	4	5	6	7	8
\boldsymbol{y}	16	14	11	10	5	2	3	2

Step 1 Make a scatter plot of the data.

Step 2 Use a straightedge to draw a line.
There will be some points above and some below the line.

Step 3 Choose two points on the line to find the equation:

Step 4 Use the points to find the slope:

$$
m=\frac{y 2}{2 x}-2 x x_{1}=\frac{11-3}{3-7}=\frac{8}{-4}=-2
$$

Step 5 Find the y-intercept:

$$
b=16
$$

Step 6 Write the equation:
$y=m x+b$

