\qquad Key
Find the vertical asymptotes, horizontal asymptotes, slant asymptotes, x-intercepts and, y -intercepts. Then sketch the graph.

1. $f(x)=\frac{x-2}{x^{2}+4 x+3}$

Vertical Asymptotes): $X=-1 \quad X=-3$
Horizontal/Slant Asymptotes): $y=0$
x-intercepts): $\quad(2,0)$
y-intercepts): $\quad\left(0,-\frac{2}{3}\right)$
2. $y=\frac{x^{2}-6 x+5}{x-4}$

Vertical Asymptote (s): $\quad X=4$
Horizontal/Slant Asymptotes) $y=x-2$ x-intercepts): $\quad(1,0) \quad(5,0)$
y-intercepts): $\quad\left(0,-\frac{8}{4}\right)$
4. $y=\frac{-2}{x+1}$

Vertical Asymptotes): \qquad
Horizontal/Slant Asymptotes): \qquad $y=0$ x-intercept(s): \qquad

State the domain of the function.
5. $f(x)=\sqrt{x-5}$

Domain: \qquad
$[5, \infty)$
7. $g(x)=-2 \sqrt[3]{x}+9$

Domain: \qquad
6. $g(x)=\sqrt[3]{x+7}$

Domain: \qquad

$$
(-\infty, \infty)
$$

8. $f(x)=\sqrt{x-1}+3$

Domain: \qquad

Write the radical equation given the following.
9. What is the equation of a square root function that is shifted 13 units down and 2 units to the right?

$$
\begin{aligned}
& f(x)=\sqrt{x-2}-13 \\
& \text { 11. Write the radical equation from the } \\
& \text { graph. } \\
& y=-\sqrt{x+3}+1
\end{aligned}
$$

9. $h(x)=-2 \sqrt{x-1}$

10. What is the equation of a cube root function that is shifted 9 units up and 7 units to the right?

$$
f(x)=\sqrt[3]{x-7}+9
$$

(12-14) Graph the Radical Functions.

$$
\text { 12. } k(x)=\sqrt[3]{x}+2
$$

10. $k(x)=\sqrt[3]{x+3}$

