Evaluate the expression.

1. $\log_2(4 \cdot 6)$

4.6

2. $\log_2 4^3$

3. log 8

5. $\log \frac{1}{2}$

6. log₁₆ 81

- 48

1.6

0.9

Expand the expression.

7. $\ln 22x$

4 ln 4.6

8. $\log_{6} x^{6}$

9. log₃ 25

11. $\log_8 64x^2$

12. $\ln x^{\frac{1}{2}}v^3$

13. $\ln \frac{3y^4}{y^3}$

14. $\log_6 \frac{10}{2}$

Condense the expression.

15. $\ln 16 - \ln 4$

16. $4 \log_{16} 12 - 4 \log_{16} 2$

17. $7\log_4 2 + 5\log_4 x + 3\log_4 y$

18. $\log_3 2 + \frac{1}{2} \log_3 y$

19. $\log_{5} 8 - \log_{5} 12$

20. $\ln 20 + 2 \ln \frac{1}{2} + \ln x$

21 10 log v 2 log 10	22 2 log # log E
21. $10 \log x + 2 \log 10$	22. $2 \log x + \log 5$
109 × 10 102	log 5x2
Rewrite the equation in exponential form.	
23. $\log_5 \frac{1}{5} = -1$	24. $\log_8 512 = 3$
5-1 = 5	8 ³ = 512
25. $\log_{14} 196 = 2$	26 . $\log_{105} 11,025 = 2$
14 ² = 196	1052 = 11,025
Solve the exponential equation.	
$27. \ 25^{x-1} = 125^{4x}$	$28. \ \ 36^{x-9} = 6^{2x}$
X= -1	undefined
29. $e^{-x} = 6$	$30. \ 10^{2x} + 3 = 8$
X=-1.79	X=0.35
31. $0.25^x - 0.5 = 2$	32. $10^{-12x} + 6 = 100$
×=66	X=-0.16
$33. \ 3^{0.1x} - 4 = 5$	$3416 + 0.2(10)^x = 35$
X=20	X=2.4
Calve the legarithmic equation	
Solve the logarithmic equation. 35. $ln(4x + 1) = ln(2x + 5)$	36. $\log_2 x = -1$
X = 2	X =

37. $16 \ln x = 30$	$38. \ 1 - 2 \ln x = -4$
X = 6.5	X=17.Z
$39. \ \log_5(2x + 15) = \log_5 3x$	40. $\ln x + \ln(x+3) = 1$
X=15	X=-3.73
41. $15 + 2\log_2 x = 31$	42. $\log(5-3x) = \log(4x-9)$
X=256	X=2
42 You invest \$500 into an account coming 60/	interest compounded monthly. How long will it he

43. You invest \$500 into an account earning 6% interest compounded monthly. How long will it be until the balance is double? $A = P\left(1 + \frac{r}{n}\right)^{nt}$

44. You buy a new computer for \$2100. The computer decreases by 50% annually. When will the computer have a value of \$600? $y = a(1-r)^t$

45. You drink a beverage with 120 mg of caffeine. Each hour, the caffeine in your system decreases by about 12%. How long until you have 10mg of caffeine? $y = a(1-r)^t$

46. The foundation of your house has about 1,200 termites. The termites grow at a rate of about 2.4% per day. How long until the number of termites doubles? $y = a(1+r)^t$