Modeling with expressions

- An expression is a mathematical phrase that contains numbers or variables.
- Terms are the parts being added.

Coefficient is the number in front of the variable.

• A constant is a term without a variable.

Ex.1 identify the terms and coefficients of the expression.

a)
$$8x + 2y + 7 =$$

+erms: $8x, 2y, 7 =$
Coefficients: $8, 2, 7$

b)
$$2X + 3y - 4z + 10$$

 $+erms: 2X, 3y, -4z, 10$
 $(eff:c:ent: 2, 3, -4, 10)$

Ex.2 Curtis is buying supplies for his school. He buys p packages of crayons at \$1.49 per package and q packages of markers at \$3.49 per package. What does the expression 1.49p + 3.49q represent?

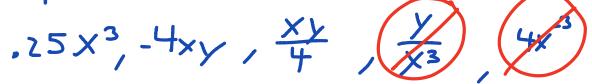
1.49p	price of 9 crayons
3.499	price of 9 markers
1.49p + 3.4	

<u>Modeling expressions.</u> Words that mean... Addition: sum, add, more than, increased by, total, altogether.

Subtraction: less than, minus, subtracted from, difference, take away, taken from, reduced by.

Multiplication: times, multiplied by, product, percent of.

Division: divided by, division of, quotient of, divided into, ratio of.

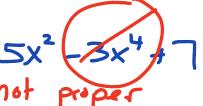

Ex.3 write an algebraic expression in simplest form.

a) a number increased by 2. X+2 b) the difference of a number and 2. X-7 c) the product of 0.6 and a number. 0.6X d) a number divided by 5. e) the price of an item plus 6% sales tax. 1P + .06P = 1.06Pf) the price of a car plus 8.5% sales tax. C + .085c = 1.085c

Understanding Polynomial Expressions

88 7.

 A monomial is an expression with one term that cannot have a variable in the denominator and must have whole number exponents.

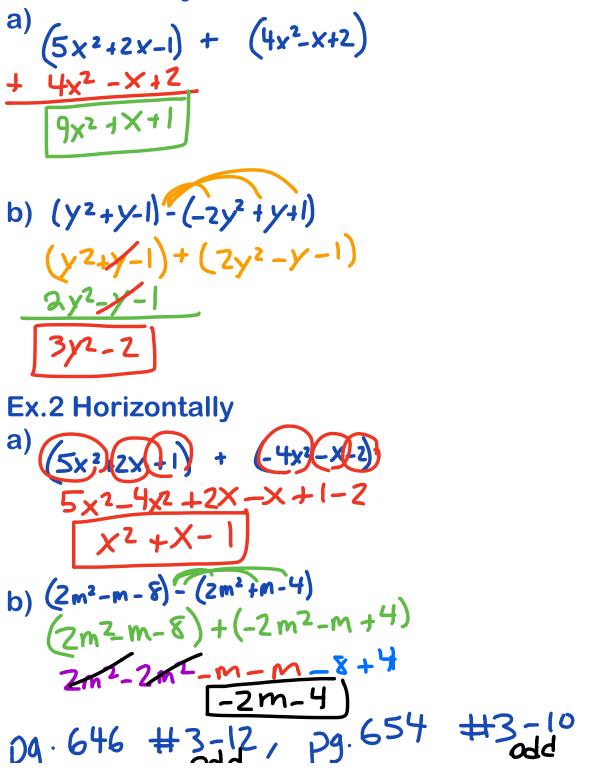

- Degree of polynomial the largest exponent value of the terms.
- Polynomial has one or more terms, written
 in decreasing degree.

$$4x^3 + x^2 - 5$$

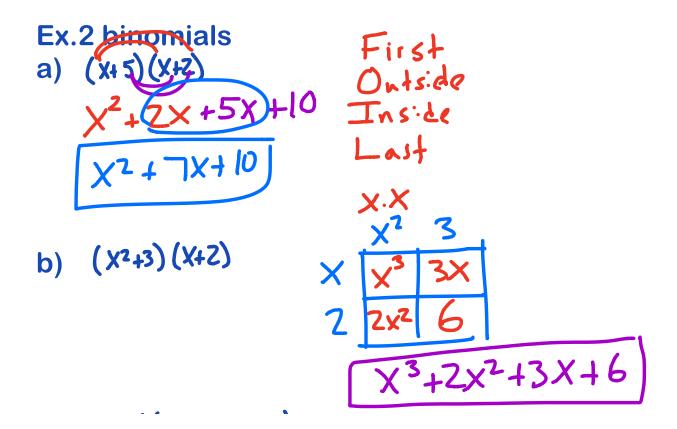

- Binomial two terms.
- Trinomial three terms.
- Leading coefficient the number in front of the first term.

Ex.1 Write the polynomial in standard form. Then state the leading coefficient and the degree.

a) $10 - 3x^{2} + X^{5} + 4x^{3}$ degree 5 $\rightarrow 1 X^{5} + 4x^{3} - 3x^{2} + 10$



Ex.2 Simplifying polynomials (Like terms have the same variable and power).


Pg.637 #1-14

Addicting and Subtracting Polynomials Ex.1 vertically

[U

 $\frac{\text{Multiplying Polynomials}}{\substack{\text{Ex.1 Monomials}\\\text{a)} (6x^{2})(-4x^{3})} = -24x^{7} \qquad x^{6} \cdot x^{b} = x^{(a+b)} \\ \times \times \times \\ \times \times \times \\ \text{b)} \qquad (5xy^{2})(7xy) = 35x^{2}y^{3} \\ y \cdot y \cdot y \\ x \cdot y \cdot y = 9x^{3} + 18x^{2} - 15x$

c)
$$(3x-4)(-2x^{2}+5x-4)$$

 $3x -4 -4 -5x^{2} -5x -6$
 $3x -4 -4 -5x^{2} -20x^{2} -24 -5x^{2} -38x + 24 -6x^{2} -6x^{2} + 23x^{2} -38x + 24 -6x^{2} -6x^{2} -38x + 24 -6x^{2} -6x^{2} -38x^{2} + 23x^{2} -38x + 24 -6x^{2} -6x^{2} -38x^{2} + 24 -6x^{2} -6x^{2} -38x^{2} -38x^{2} + 24 -6x^{2} -6x^{2} -38x^{2} -38x^{2} + 24 -6x^{2} -38x^{2} -38x^{2} + 24 -6x^{2} -38x^{2} -38x^{2} -38x^{2} + 24 -6x^{2} -38x^{2} -$

Simplify Radical Expressions

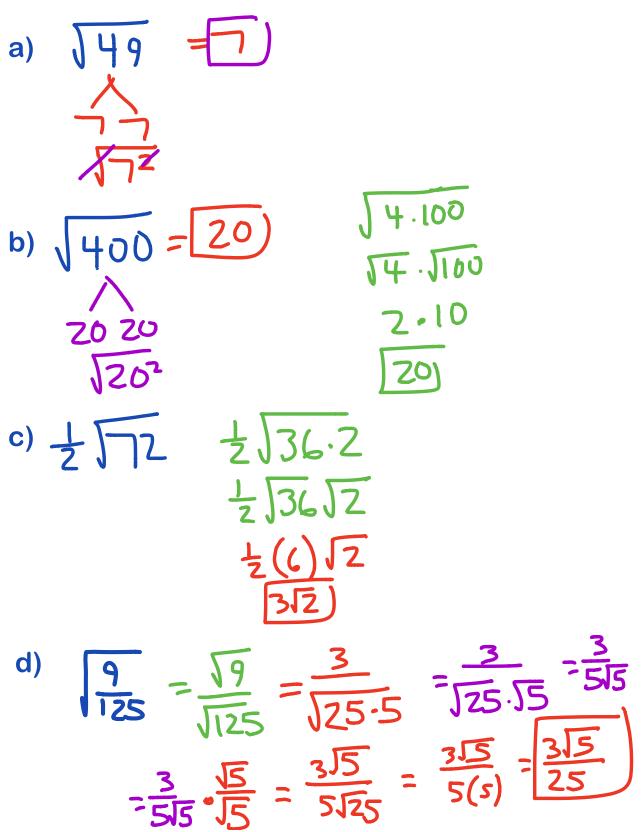
A radical expression is in simplest form if the following are true.

1. No perfect square factors

8=4.5=212

2. No fractions in the radical

$$\int \frac{5}{16} = \frac{5}{16} = \frac{5}{4}$$


3. No radicals in the denominator

 Perfect squares
 $|1^2 = 1|$ $6^2 = 36$ $|1^2 = 121|$
 $1^2 = 1$ $6^2 = 36$ $12^2 = 121$
 $2^2 = 4$ $7^2 = 49$ $13^2 = 169$
 $3^2 = 9$ $8^2 = 64$ $14^2 = 196$
 $4^2 = 16$ $9^2 = 81$ $15^2 = 225$
 $5^2 = 25$ $10^4 = 100$ $15^2 = 225$

Product Property - $\int ab = \sqrt{a} \int b$

Quotient Property - $\sqrt{\frac{1}{6}} = \sqrt{\frac{1}{16}}$

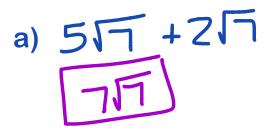
Ex.1 simplify the radical expression

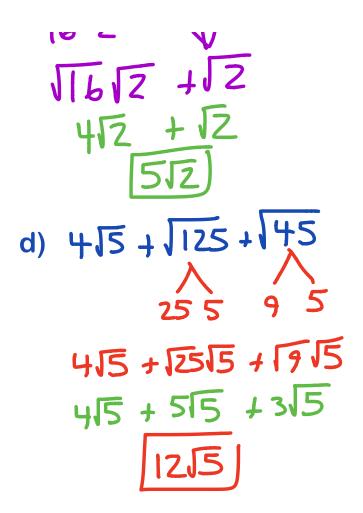
e)
$$\int \frac{19}{2} = \sqrt{5}$$

f)
$$\sqrt{\chi^4 \gamma^2} = \sqrt{\chi^4} \sqrt{y^2} = \sqrt{\chi^2}$$

g)
$$\sqrt{25\chi^2 y^3} = \sqrt{25\sqrt{x^2} y^3}$$

= $5\chi y \overline{y}$


Adding and Subtracting Radicals


• The number inside the radical has to be the same in order to add/subtract.

312 + 12

Ex.1 perform the indicated operation

Multiplying and Dividing Radical Expressions

- Multiply numbers that are both outside the radical.
- Multiply numbers that are both inside the radical.

ab. (12 = ac162

a)
$$\sqrt{2} \sqrt{8} = \sqrt{16} = 4$$

b)
$$5\sqrt{3} \cdot \sqrt{2} = 35\sqrt{6}$$

c)
$$\sqrt{2}(5-\sqrt{3}) = 5\sqrt{2}-\sqrt{6}$$

d)
$$(1+\sqrt{5})^{2} = (1+\sqrt{5})(1+\sqrt{5})$$

 $1\sqrt{5}$
 $1\sqrt{5}$
 $\sqrt{5}\sqrt{5}$
 $\sqrt{5}\sqrt{5}$

e)
$$\frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{2}} = \frac{2\sqrt{2}}{\sqrt{4}} = \frac{2\sqrt{2}}{\sqrt{2}} = \sqrt{2}$$

Irrational verse Rational

- Rational numbers can be written as a ratio of two integers.
- Rational numbers have repeating or terminating decimals.
- Irrational numbers cannot be written as a ratio with integers.

Ex.1 Determine if the numbers are rational or irrational.

a)
$$\frac{-5}{2} = -2.5$$
 rational
iscational

b)
$$TT = 3.14...$$

c) $\frac{1}{3} = .3$ rational
d) $\sqrt{7} = 2.64575...$ irrational
e) $\frac{2\sqrt{3}}{5}$ irrational

Using ratios and proportions to solve problems

- A ratio is a comparison of two number by division.
- A proportion is an equation where two ratios are equal.

Ex.1 use dimensional analysis to convert the measurements. \bigcirc

a) An adult male human has 12 pints of blood. Convert to gallons.

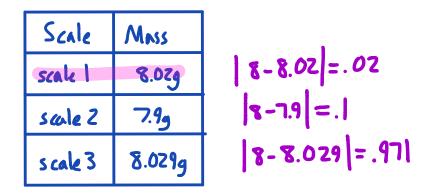
$$\frac{12pts}{1}, \frac{1}{2} \frac{qts}{7}, \frac{1}{2} \frac{qts}{7}, \frac{1}{4qts}, \frac{1}{4} \frac{qal}{7} = \frac{12}{8} \frac{gal}{1.5} = \frac{3}{2} \frac{gal}{1.5}$$

b) The length of a building is 720 in. Convert to yards.

c) 7500 seconds = _____hours $\frac{7500 \text{ sec}}{1} \circ \frac{1 \text{ min}}{60 \text{ sec}} \circ \frac{1 \text{ hr}}{60 \text{ min}} = \frac{7500 \text{ hrs}}{3600}$ d) 4 inches = _____yards $\frac{2.1 \text{ hrs}}{2.1 \text{ hrs}}$ $\frac{4 \text{ in}}{1} \circ \frac{1 \text{ ff}}{12 \text{ in}} \circ \frac{1 \text{ yd}}{3 \text{ ff}} = \frac{4 \text{ yd}}{36} = \frac{4 \text{ yd}}{9 \text{ yd}}$

Ex.2 Amanda traveled 105 kilometers in 4.2 hours and Brenda traveled at a rate of 0.2 miles per minute. Which girl traveled at a faster rate? (1 mile = 1.61 km)

$$\frac{105 \text{ Km}}{(4.2) \text{ hs}} = \frac{105}{1.61} \text{ kgr} = \frac{105}{60 \text{ min}} = \frac{105}{405.72} \text{ cm}$$
Amanda


Reporting with Precision and Accuracy

- Precision is the level of detail of a measurement, determined by the smallest unit.
- Accuracy is the closeness of a given measurement. You can find the accuracy of the measurement by finding that absolute value of the difference.

Ex.1 which measurement is more precise?

Measurement 1	Mensurement 2
Чŋ	<u> 4.3</u> q
5.71 0Z	5.7 oz
4.2 m	422 cm
7ft Zin.	-7.2 in

Ex.2 which measurement is more accurate if it is known the weight is 8 g?

Identifying significant digits

• Significant digits are the digits in measurements that carry meaning about the precision of the measurement.

All nonzero digits are significant 55.98 4 SD 115 3 SD

Zeros between two other significant digits are significant

Zeros at the end of a number to the right of the decimal point are significant.

3.900 4 SD, 0.1230 4 SD

Zeros to the left of the first nonzero digit in a decimal are not significant.

U.00035 Z SD, U.0806 3 SJ

Zeros at the end of a number without a decimal point are assumed to be NOT significant.

Ex.1 Determine the number of significant digits.