Modeling with expressions

- An expression is a mathematical phrase that contains numbers or variables.
- Terms are the parts being added.

Coefficient is the number in front of the variable.

- A constant is a term without a variable.

Ex. 1 identify the terms and coefficients of the expression.
a) $8 x+2 y+7 z$
terms: $8 x, 2 y, 7 z$
Coefficients: $8,2,7$
b) $2 x+3 y-4 z+10$
terms: $2 x, 3 y,-4 z, 10$
Coefficient: $2,3,-4,10$)

Ex. 2 Curtis is buying supplies for his school. He buys p packages of crayons at $\$ 1.49$ per package and q packages of markers at \$3.49 per package. What does the expression $1.49 p+3.49 q$ represent?

$$
\begin{aligned}
& 9 p+3.49 q \text { represent? of } p \text { crayons } \\
& 1.49 p \text { price of } p \text { markers } \\
& 3.49 q \text { price of } q \text { mar } \\
& 1.49 p+3.49 q \text { total of crayons } \\
& \text { \& markers }
\end{aligned}
$$

Modeling expressions.
Words that mean...
Addition: sum, add, more than, increased by, total, altogether.

Subtraction: less than, minus, subtracted from, difference, take away, taken from, reduced by.

Multiplication: times, multiplied by, product, percent of.

Division: divided by, division of, quotient of, divided into, ratio of.

Ex. 3 write an algebraic expression in simplest form.
a) a number increased by 2 .

$$
x+2
$$

b) the difference of a number and 2.

$$
x-2
$$

c) the product of 0.6 and a number.

$$
0.6 x
$$

d) a number divided by 5 .

$$
\frac{x}{5}
$$

e) the price of an item plus 6% sales tax.

$$
1 P+.06 P=1.06 P
$$

f) the price of a car plus 8.5% sales tax.

$$
c+.085 c=1.085 c
$$

Understanding Polynomial Expressions

- A monomial is an expression with one term that cannot have a variable in the denominator and must have whole number exponents.
$.25 x^{3},-4 x y, \frac{x y}{4}$

- Degree of polynomial - the largest exponent value of the terms.
- Polynomial - has one or more terms, written in decreasing degree.

$$
4 x^{3}+x^{2}-5
$$

- Binomial - two terms.

- Trinomial - three terms.
- Leading coefficient - the number in front of the first term.

Ex. 1 Write the polynomial in standard form. Then state the leading coefficient and the degree.
a)

$$
-1 \ldots
$$

leading coefficient - constant
b) $10 x^{\prime}+13-15 x^{2}$ degree 2

$$
L C-15 x^{2}+10 x+13
$$

Ex. 2 Simplifying polynomials (Like terms have the same variable and power).
a)

$$
-7 y^{2}
$$

b) $a b-a^{2}+4^{2}-5 a b+3 a^{2}+10$

$$
-4 a b+2 a^{2}+26
$$

$$
2 a^{2}-4 a b+26
$$

pg. $637 \neq 1-14$

Addicting and Subtracting Polynomials
Ex. 1 vertically

$$
\text { a) } \begin{aligned}
& \left(5 x^{2}+2 x-1\right)+\left(4 x^{2}-x+2\right) \\
& +\quad 4 x^{2}-x+2 \\
& \hline 9 x^{2}+x+1
\end{aligned}
$$

b)

$$
\text { 0) } \begin{aligned}
& \left(y^{2}+y-1\right)-\left(-2 y^{2}+y+1\right) \\
& \left(y^{2}+y-1\right)+\left(2 y^{2}-y-1\right) \\
& \frac{2 y^{2}-y-1}{3 y^{2}-2}
\end{aligned}
$$

Ex. 2 Horizontally
a)

$$
\begin{aligned}
& \left(5 x^{2}\right)(2 x+1)+\left(-4 x^{2}-x^{2}-2\right) \\
& 5 x^{2}-4 x^{2}+2 x-x+1-2 \\
& x^{2}+x-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \begin{array}{l}
\left(2 m^{2}-m-8\right)-\left(2 m^{2}+n-4\right) \\
\left(2 m^{2}-m-8\right)+\left(-2 m^{2}-m+4\right) \\
2 m^{2}-2 m^{2}-m-m-8+4 \\
\hline-2 m-4) \\
\text { Da. } 646 \text { \#3-12, Pg. } 654 \text { \#3-10 }
\end{array} \text { odd }
\end{aligned}
$$

Multiplying Polynomials
Ex. 1 Monomials
a) $\left.\left(6 x^{3}\right)\left(-4 x^{4}\right)=-24 x^{7}\right) \quad x^{a} \cdot x^{b}=x^{(a+b)}$

$$
X \cdot X \cdot X_{X \cdot X \cdot X} \cdot X
$$

b) $\left(5 x y^{2}\right)(7 x y)=35 x^{2} y^{3}$

$$
y \cdot y \cdot y
$$

c) $3 x^{1}\left(3 x^{2}+6 x-5\right)=9 x^{3}+18 x^{2}-15 x$

Ex. 2 binomials
a)

$$
\begin{aligned}
& (x+5)(x+2) \\
& x^{2}+2 x+5 x+10 \\
& x^{2}+7 x+10
\end{aligned}
$$

b) $\left(x^{2}+3\right)(x+2)$

First Outside
Inside
Last
$x \cdot x$

	2
	x^{3}
	$3 x$
$2 x^{2}$	6

c) $(3 x-4)\left(-2 x^{2}+5 x-6\right)$

Special Products of Binomials

$$
\begin{gathered}
(a+b)(a-b)=a^{2}-b^{2} \\
(x+6)(x-6) \\
x^{2}-36
\end{gathered}
$$

- $(a+b)^{2}=a^{2}+2 a b+b^{2}$

$$
(x+4)^{2}
$$

$$
x^{2}+8 x+16
$$

- $(a-b)^{2}=a^{2}-2 a b+b^{2}$

$$
\frac{(x-5)^{2}}{x^{2}-10 x+25}
$$

Simplify Radical Expressions

 A radical expression is in simplest form if the following are true.1. No perfect square factors

$$
\sqrt{8}=\sqrt{4} \cdot \sqrt{2}=2 \sqrt{2}
$$

2. No fractions in the radical

$$
\sqrt{\frac{5}{16}}=\frac{\sqrt{5}}{\sqrt{16}}=\frac{\sqrt{5}}{4}
$$

3. No radicals in the denominator

$$
\frac{1}{\sqrt{4}}=\frac{1}{2}
$$

Perfect squares

$$
\begin{array}{lll}
1^{2}=1 & 6^{2}=36 & 11^{2}=121 \\
2^{2}=4 & 7^{2}=49 & 12^{2}=144 \\
3^{2}=9 & 8^{2}=64 & 13^{2}=169 \\
4^{2}=16 & 9^{2}=81 & 14^{2}=196 \\
5^{2}=25 & 10^{2}=100 & 15^{2}=225
\end{array}
$$

Product Property $-\sqrt{a b}=\sqrt{a} \sqrt{b}$
Quotient Property - $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$

Ex. 1 simplify the radical expression
a) $\sqrt{49}=\square$

b)

$$
\begin{array}{cc}
\sqrt{400}=\sqrt{20} & \sqrt{4 \cdot 100} \\
\Lambda & \sqrt{4} \cdot \sqrt{100} \\
2020 & 2 \cdot 10 \\
\sqrt{20^{2}} & \boxed{20}
\end{array}
$$

c) $\frac{1}{2} \sqrt{72}$

$$
\begin{gathered}
\frac{1}{2} \sqrt{36 \cdot 2} \\
\frac{1}{2} \sqrt{36} \sqrt{2} \\
\frac{1}{2}(6) \sqrt{2} \\
3 \sqrt{2}
\end{gathered}
$$

d)

$$
\begin{aligned}
& \sqrt{\frac{9}{125}}=\frac{\sqrt{9}}{\sqrt{125}}=\frac{3}{\sqrt{25 \cdot 5}}=\frac{3}{\sqrt{25} \cdot \sqrt{5}}=\frac{3}{5 \sqrt{5}} \\
& =\frac{3}{5 \sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{3 \sqrt{5}}{5 \sqrt{25}}=\frac{3 \sqrt{5}}{5(5)}=\frac{3 \sqrt{5}}{25}
\end{aligned}
$$

e) $\sqrt{\frac{10}{2}}=\sqrt{\sqrt{5}}$
f) $\sqrt{x^{4} y^{2}}=\frac{\sqrt{x^{4}} \sqrt{y^{2}}}{\sqrt{x \cdot x} x y}=\sqrt{y x^{2}}$
g) $\sqrt{25 x^{2} y^{3}}=\sqrt{25} \sqrt{x^{2}} \sqrt{y^{3}}$

$$
=5 x y \sqrt{y}
$$

Adding and Subtracting Radicals - The number inside the radical has to be the same in order to add/subtract.

$3 \sqrt{2}+\sqrt{2}$

Ex. 1 perform the indicated operation
a) $\frac{5 \sqrt{7}}{7 \sqrt{7}}+2 \sqrt{7}$
b) $11 \sqrt{3}-12 \sqrt{3}$

$$
-1 \sqrt{3}
$$

c) $\sqrt{32}+\sqrt{2}$

$$
\begin{gathered}
\sqrt{16} \sqrt{2}+\sqrt{2} \\
4 \sqrt{2}+\sqrt{2} \\
5 \sqrt{2}
\end{gathered}
$$

d)

$$
\begin{gathered}
4 \sqrt{5}+\underset{\lambda}{\sqrt{125}}+\sqrt{45} \\
255 \\
4 \sqrt{5}+\sqrt{25} \sqrt{5}+\sqrt{9} \sqrt{5} \\
4 \sqrt{5}+5 \sqrt{5}+3 \sqrt{5} \\
12 \sqrt{5}
\end{gathered}
$$

Multiplying and Dividing Radical Expressions

- Multiply numbers that are both outside the radical.
- Multiply numbers that are both inside the radical.

$$
a \sqrt{b} \cdot c \sqrt{d}=a c \sqrt{b d}
$$

a) $\sqrt{2} \sqrt{8}=\sqrt{16}=4$
b) $5 \sqrt{3} \cdot 7 \sqrt{2}=35 \sqrt{6}$
c) $\sqrt{2}(5-\sqrt{3})=5 \sqrt{2}-\sqrt{6}$
d) $(1+\sqrt{5})^{2}=(1+\sqrt{5})(1+\sqrt{5})$

	1	$\sqrt{5}$
	1	$\sqrt{5}$
	$\sqrt{25}$	

$$
\begin{aligned}
& 1+\sqrt{5}+\sqrt{5}+\sqrt{25} \\
& 1+2 \sqrt{5}+5 \\
& \text { e) } \frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{2 \sqrt{2}}{\sqrt{4}}=\frac{2 \sqrt{2}}{2} \\
&
\end{aligned}
$$

Irrational verse Rational

- Rational numbers can be written as a ratio of two integers.
- Rational numbers have repeating or terminating decimals.
- Irrational numbers cannot be written as a ratio with integers.

Ex. 1 Determine if the numbers are rational or irrational.
a) $\frac{-5}{2}=-2.5$ rational
-... :rational
b) $\pi=3.14 \ldots$
c) $\frac{1}{3}=. \overline{3}$ rational
d) $\sqrt{7}=2.64575 \ldots$ irrational
e) $\frac{2 \sqrt{3}}{5}$ irrational

Using ratios and proportions to solve problems

- A ratio is a comparison of two number by division.
- A proportion is an equation where two ratios are equal.

Ex. 1 use dimensional analysis to convert the measurements.
a) An adult male human has 12 pints of blood. Convert to gallons.

$$
\frac{12 \mathrm{pts}}{1} \cdot \frac{1 \text { pts }}{2 \text { pts }} \cdot \frac{1 \mathrm{gal}}{4 a t \mathrm{ts}}=\frac{12 \mathrm{gal}}{8}=\frac{3}{2} \mathrm{gal}
$$

b) The length of a building is $\mathbf{7 2 0} \mathbf{i n}$. Convert to yards.

$$
\frac{720 i k}{1} \cdot \frac{18 f}{12 \text { yr }} \cdot \frac{1 y d}{3 y t}=\frac{720}{36} \mathrm{yd}=20 \mathrm{yd}
$$

c) 7500 seconds $=$ \qquad hours

$$
\frac{7500 \mathrm{sec}}{1} \cdot \frac{1 \mathrm{~min}}{60 \mathrm{sec}} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{~m} \cdot \mathrm{n}}=\frac{7500}{3600} \mathrm{hrs}
$$

d) 4 inches $=$ \qquad yards

$$
\frac{4 \text { in }}{1} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in}} \cdot \frac{1 y d}{3 \mathrm{ft}}=\frac{4}{36} y d=\frac{1}{9} y d
$$

Ex. 2 Amanda traveled 105 kilometers in 4.2 hours and Brenda traveled at a rate of 0.2 miles per minute. Which girl traveled at a faster rate? $(1 \mathrm{mile}=1.61 \mathrm{~km})$

$$
\begin{equation*}
\frac{105 \mathrm{~km}}{4.2)} \cdot \frac{1}{(1.61} \mathrm{k}: \frac{1 \mathrm{br}}{\frac{160}{\text { Amanda }}}=\frac{105}{405.72} \tag{26}
\end{equation*}
$$

Reporting with Precision and Accuracy

- Precision is the level of detail of a measurement, determined by the smallest unit.
- Accuracy is the closeness of a given measurement. You can find the accuracy of the measurement by finding that absolute value of the difference.

Ex. 1 which measurement is more precise?

Measurement 1	Measurement 2
4 g	4.3 g
5.71 oz	5.7 oz
4.2 m	422 cm
$7 \mathrm{ft} 2 \mathrm{in}$.	7.2 in

Ex. 2 which measurement is more accurate if it is known the weight is $\mathbf{8} \mathbf{g}$?

Scale	Mass
seak 1	8.02 g
scale 2	7.9 g
scale 3	8.029 g

$$
\begin{aligned}
& |8-8.02|=.02 \\
& |8-7.9|=.1 \\
& |8-8.029|=.971
\end{aligned}
$$

Identifying significant digits

- Significant digits are the digits in measurements that carry meaning about the precision of the measurement.

All nonzero digits are significant

$$
55.98 \quad 4 \text { SD } 115 \quad 3 \text { SD }
$$

Zeros between two other significant digits are significant

102 3SD, 0.4000008 TSD
Zeros at the end of a number to the right of the decimal point are significant.

$$
3.900 \quad 4 \text { SD, } 0.1230 \quad 4 \text { SD }
$$

Zeros to the left of the first nonzero digit in a decimal are not significant.

$$
0.000352 \text { SD, } 0.080635
$$

Zeros at the end of a number without a decimal point are assumed to be NOT significant.

$$
\begin{array}{llll}
\text { cant. } \\
60,600 & 3 & \text { SD } 77,000,000 & \text { 2SD }
\end{array}
$$

Ex. 1 Determine the number of significant digits.
a) 0.052 kg

2 SD
b) $10,000 \mathrm{ft}$

1 SD
c) 10.000 ft

5 SD

