Solving Equations
Properties of Equality
Addition Property of Equality: you can add the same number to both sides of the equation, and the statement remains true.

$$
\begin{array}{cl}
3=3 & a=b \\
3+2=3+2 & a+c=b+c \\
5=5 &
\end{array}
$$

Subtraction Property of Equality- you can subtract the same number from both sides of the equation...

$$
5=5
$$

$$
\begin{gathered}
a=b \\
a-c=b-c
\end{gathered}
$$

$$
\begin{aligned}
5-1 & =5-1 \\
4 & =4
\end{aligned}
$$

Multiplication Property of Equality- you can multiply both sides of the equation by the same number...

$$
7=7
$$

$$
\begin{aligned}
2(7) & =2(7) \\
14 & =14
\end{aligned}
$$

$$
\begin{gathered}
a=b \\
c(a)=c(b)
\end{gathered}
$$

Division Property of Equality- you can divide both sides of an equation by the same nonzero number...

$$
\frac{8}{2}=\frac{8}{2}
$$

$$
\frac{a}{c}=\frac{b}{c} \quad c \neq 0
$$

$$
4=4
$$

***Distributive Property $a(b+c)=a b+a c$
Ex. 1 Solve the equation using Properties of Equality.
a)

$$
\begin{gathered}
3 x-2=6 \\
+2 \\
+2 \\
\frac{3 X}{3}=\frac{8}{3} \\
x=\frac{8}{3}
\end{gathered} \quad \text { APE }
$$

b)

$$
\begin{aligned}
& \frac{1}{2} z+4=10 \\
& \left(\frac{1}{2} z\right)=(6) 2 \text { APE } \\
& z=12
\end{aligned}
$$

Ex. 2 Write an equation and solve for the unknown quantity.
c) An ostrich that is 108 inches tall is 20 inches taller than 4 times the height of a kiwi in inches.

$$
108 \text { in }=4 x+2 \%
$$

$$
\frac{\pi}{4}=\frac{4}{x=22}
$$

(d) An emu that measures 60 inches in height is 70 inches less than 5 times the height of a kakapo. What is the height of a kakapo?

$$
\begin{aligned}
& 60=5 x+70 \\
& +70=\frac{5 x}{5} \\
& \frac{130}{5}=\frac{5 x}{5} \\
& 26=x
\end{aligned}
$$

$$
\operatorname{Pg.~} 8 \# 3-17, \# 20,22,26
$$

Writing equations
Ex. 1 One half an amount added to $\$ 50$ is \$262.

$$
\begin{aligned}
\frac{1}{2} x & +5 y=262 \\
-50 & -50 \\
3 \cdot \frac{1}{2} x & =212 \cdot 2 \\
x & =424
\end{aligned}
$$

Ex. 2 Four times the sum of a number and 10 is
48.

$$
\begin{array}{lr}
4(x+10)=48 & 4(x+10)=\frac{48}{4} \\
4 x+48=48 & x+10 y=12 \\
-40-40 & -10=-10 \\
\frac{x x}{x}=\frac{8}{4} & x=2
\end{array}
$$

Ex. 3 A rectangular garden is fenced on all sides with 256 feet of fencing. The -garden is 8 feet longer than it is wide. Find the length and width of the garden.

$$
w+8+w+w+8+w=256
$$

$$
\rho=256
$$

wo
w

$$
\begin{gathered}
4 w+14=256 \\
-16-16 \\
\frac{4 w}{4}=\frac{240}{4} \\
w=60
\end{gathered}
$$

Ex. 4 One moving company charges $\$ 800$ plus $\$ 16$ per hour. Another company charges $\$ 720$ plus $\$ 21$ per hour. At what number of hours will the charge by both companies be the same?
$p y .51$ \#1-8

Solving for a variable

- Literal equations- are equations that contain two or more variables. Many literal equations are formulas.

Ex. 1 solve for the indicated variable.
a) $\frac{V}{1 \omega}=\frac{k \cdot \omega \cdot h}{L \sigma 5}$

$$
h=\frac{V}{L w}
$$

$$
\begin{gathered}
\text { b) } \left.V(D)=\frac{m}{8}\right)^{X} \\
m=V D
\end{gathered}
$$

c)

$$
\text { c) } \begin{aligned}
& 2(A)=\left(\frac{y}{h}(a+b) h\right) \not t \\
& \frac{2 A}{a+b}=\frac{(a+b) h}{(a+b)} \\
& h=\frac{2 A}{a+b} \\
& \text { pg. } 51 \quad \# 1-8 \\
& \text { pg. } 58 \quad+1-20 \text { odd }
\end{aligned}
$$

Creating and Solving Inequalities

- when you multiply or divide by a negative, it changes the direction of the sign.
- Is less than <

- Is less than or equal to

$$
\leq
$$

- Is greater than 7
- Is greater than or equal to \geq
- Is not equal to

Ex. 1 solve the inequality
a)

$$
\begin{array}{c|l}
2 x \leq-2(4 x+4) & \frac{2 x}{-2} \leq \frac{\pi(4 x+4)}{-2} \\
2 x \leq-8 x-8 & -1 x \geq 4 x+4 \\
+8 x+7 x & -4 x-4 x \\
\frac{16 x}{16} \leq \frac{-8}{10} & -\frac{5 x \geq 4}{-5} \frac{-5}{10} \\
x \leq \frac{8}{10} & x \leq-\frac{4}{5} \\
x \leq \frac{-4}{5} &
\end{array}
$$

b) $\left.\begin{gathered}\frac{1}{2}(-2 x-12)>4-6 x \\ \cdots-4-46\end{gathered} \right\rvert\, 2\left(\frac{1}{2}(-2 x-12)\right)>\left(4-6 x^{2}\right.$

$$
\begin{array}{c|c}
-1 x-6>7-8 x & -2 x-12>8-12 x \\
+6 x & +12 x \\
5 x-6>4 & +12 x \\
+6+6 & 10 x-12>8 \\
\frac{5 x>\frac{10}{5}}{x>2} & \frac{10 x}{16}>\frac{20}{10} \\
x
\end{array}
$$

Ex. 2 writing inequalities.
a) It costs $\$ 20$ to attend a play. A seasons pass cost $\$ 180$. For what number of plays is it cheaper to pay $\$ 20$ than to buy a seasons pass?

$$
\begin{gathered}
\frac{28 x}{26}<\frac{180}{20} \\
x<9
\end{gathered}
$$

b) the sum of two consecutive integers is less than 83. Find the pair of integers with the greatest sum.

$$
\begin{gathered}
x+(x+1)<83 \\
2 x+y<83 \\
-1 \quad-1 \quad 40,41 \\
\frac{2 x<\frac{82}{2}}{x<41} \\
\lg 65 \neq 1-14
\end{gathered}
$$

Creating and Solving Compound Statements

- Graphs of compound inequalities involving AND is the intersection of simple inequality graphs. $\quad x>2 \quad x<6$
- Graphs of compound inequalities involving OR is the union of simple inequality graphs.

$$
x<2 \quad x>6
$$

Ex. 1 Solve each compound inequality
a)

$$
\begin{aligned}
4 \leq x+2 & \leq 8 \\
-2 & -2 \\
2 \leq x & \leq 6 \\
x & \leq 6 \\
x & \geq 2
\end{aligned}
$$

b)
c) $\begin{aligned} &-4+x> \\ &+4 \text { OR } \\ &-4 / 4+x<-3 \\ &+4\end{aligned}$

$$
x>5
$$

$$
x<1
$$

d)

$$
\begin{array}{lrr}
\frac{2 x}{\frac{1}{2}} \leq \frac{6}{2} & \text { OR } & \frac{3 x}{3}>\frac{12}{3} \\
x \leq 3 & x>4
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
-5 \leq 2 x+3<9 \\
-3
\end{array} \\
& \frac{-8}{2} \leq \frac{2 x}{8}<\frac{6}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 4 \leq x<3 \quad x \geq-4
\end{aligned}
$$

Ex. 2 write the compound inequality
a)

b)

pg. 72 \#3-16

Functions

- A relation is any set of input that has an output
- A function is a relation where every input has exactly one output.
- Looking at a t-table, every x value must have exactly one y value.
- Looking at a graph, no vertical line can pass through two or more points.

Ex. 1 Determine if the following is a function or relation.
a) $\{(3,2),(4), 3),(5), 4),(6,5)\}$
b)

x	y
-3	0
-2	-2
-1	5
0	-10
1	-4
function	

x	y
(1)	-1
2	-2
3	-3
(1)	-3

c)

Function form of an equation

- Function notation is a way to name a function. $f(x)$ is pronounced f of x.

Evaluating Functions

- Substituting values for x.

Ex. 1 Evaluate the function
a)

$$
\begin{aligned}
& f(x)=2 x+3 \text { when } x=-2 \\
& \begin{aligned}
f(-2) & =2(-2)+3 \\
& =-4+3 \\
& =-1
\end{aligned}
\end{aligned}
$$

b) $f(x)=x^{2}-2 x+3$ when $x=-3$

$$
\begin{aligned}
f(-3) & =(-3)^{2}-2(-3)+3 \\
& =9+6+3 \\
& =18
\end{aligned}
$$

Graphing Linear Equations
Ex. 1 by using a table: create a t-table.

x	y
0	1
1	-4
2	-9

I b
Ex. 2 by finding x and y intercepts. To find x intercepts, plug zero into y. To find y intercepts, plug zero into x.

$$
\frac{\left.\begin{array}{c}
x \\
(0,3) \\
\left(\frac{3}{7}, 0\right)
\end{array} \right\rvert\,}{\begin{array}{|c|c}
x & y \\
\hline 0 & 3 \\
.43 & 0
\end{array}}
$$

Ex. 3 Using slope intercept form. Must be in the form $\mathrm{y}=\mathrm{mx}+\mathrm{b}$.

$$
m=\text { slope }=\frac{r i s e}{r u n}
$$

$$
\begin{array}{r}
-2 x+y=4 \\
+2 x \quad+2 x \\
y=2 x+4 \\
m=\frac{2}{1}
\end{array}
$$

Horizontal lines, $(y=3)$

Vertical lines, $x=-1$

Rate of Change

- Rate of change is the ratio of change of one quantity to the change in another.
- Slope- is the rate of the vertical change (y) to the horizontal change (x).

$$
\begin{array}{r}
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
x_{1} y_{1} \quad x_{2} y_{2}
\end{array}
$$

Ex. 1 Find the slope $(2,4)$ and $(4,8)$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-4}{4-2}=\frac{4}{2}=\frac{2}{1}
$$

Writing Linear Equations

- Slope intercept form:
- $\quad y=m x+b$
- Point slope formula:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Ex. 1 Given slope and the y-intercept. Plug the point and slope into the slope intercept
formula. $m=-3 / 2, b=7$

$$
\frac{-3}{2}
$$

$$
\begin{aligned}
& y=m x+b \\
& y=\frac{-3}{2} x+7
\end{aligned}
$$

Ex. 2 Given two points. Find the slope of the points, then plug them into the point slope formula. ($(2,3),(-6,7)$

$$
m=y_{2}-y_{1}=7-3=4--1
$$

$$
\begin{array}{rl}
x_{2}-x_{1}-6-2 & -8 \\
y-y_{1} & =m\left(x-x_{1}\right) \\
y-3 & =-\frac{1}{2}(x-2) \\
y-3 & =-\frac{1}{2} x+1 \\
+3 & y \\
y & =-\frac{1}{2} x+4
\end{array}
$$

Ex. 3 Given a graph. Find the y-intercept (b) and the slope (m), then plug them into the slope intercept formula.

$$
\begin{aligned}
& y=m x+b \\
& b=1 \\
& m=\frac{-2}{1} \\
& y=\frac{-2}{1} x+1
\end{aligned}
$$

characteristics of graphs

- Domain- all possible x values
- Range- all possible y values
- X intercept- where the graph crosses the x axis
- Y intercept- where the graph crosses the y axis.
- Interval of increase-domain of increase
- Interval of decrease- domain of decrease

Domain: $(-\infty, \infty)$
Range: $(-\infty, \infty)$
Interval
Decrease: $(-9, \infty)$
x-intercept:
end behavior
(.5,0)

$$
\begin{aligned}
& x \rightarrow-\infty, y \rightarrow \infty \\
& x \rightarrow \infty, y \rightarrow-\infty
\end{aligned}
$$

y-interapt $(0,1)$

Systems of Equations
by Graphing

- Graph the equations, where they intersect are the solutions.
- If the graphs do not intersect, parallel lines, there are no solutions.
- If the equations are the same, there are infinitely many solutions.

Ex. 1 one solution, lines intersect

$$
\begin{aligned}
& y+2 x=3 \\
& -2 x-2 x \\
& y=\frac{-2}{1} x+3 \\
& y=\frac{3}{1} x-2
\end{aligned}
$$

Ex. 2 No solution, lines are parallel

Ex. 3 Infinitely many solutions, same lines

$$
\begin{aligned}
& -2 x=3-y \\
& -3=-3 \\
& +y=\frac{-2 x-3}{-1}-1 \\
& y=2 x+3 \\
& -2 x-3=-y \\
& -y=-2 x-3 \\
& y=2 x+3
\end{aligned}
$$

By Elimination

1. write the equations with like terms in columns
2. Create opposite coefficients if needed.
3. Add the equations
4. Solve for the remaining variable

Ex. $1 \quad 2 x-2 y=-8$

$$
\rightarrow 2 x+2 y=4
$$

$$
\begin{aligned}
2(-1)+2 y & =4 \\
-2 y+2 y & =4 \\
+2 & +2 \\
-2 y & =\frac{6}{2} \\
y & =3
\end{aligned}
$$

Ex. 2

$$
\begin{array}{r}
\text { Ex. } 2(2 x-3 y=4 \\
-4 x+5 y=-8 \\
4 x-6 y=8 \\
-y=0 \\
y=0
\end{array}
$$

$$
\begin{gathered}
-4 x+5(0)=-8 \\
-4 x=\frac{-8}{-4} \\
x=2
\end{gathered}
$$

$(2,0)$

$$
\text { Ex. } \begin{gathered}
(4 x+5 y=-2) 4 \\
(5 x-4 y=-23) 5 \\
16 x+20 y=-8 \\
25 x-20 y=-115 \\
\frac{41 x}{4 x}=\frac{-123}{41}
\end{gathered}
$$

$$
\begin{aligned}
& 4(-3)+5 y=-2 \\
&-12 / 5 y=-2 \\
& 12+12 \\
& \frac{5 y}{5}=\frac{10}{5} \\
& y=2 \\
&(-3,2)
\end{aligned}
$$

By substitution

1. solve for x and y.
2. Plug x or y into the other equation.
3. Solve for the variable.
4. Use the solution to find the other variable.

Ex. 1 X

$$
\begin{aligned}
& x=-4 \\
& 3 x+2 y=2 \\
& 3(-4)+2 y=2 \\
& -1 y+2 y=2 \\
& +12 \\
& +12
\end{aligned}
$$

$$
\begin{equation*}
\frac{8 y}{2}=\frac{14}{2} \tag{-3,2}
\end{equation*}
$$

$y=7$
Ex. $2 x+y=-1$

$$
\begin{array}{r}
5 x+y=-13 \\
-y-y
\end{array}
$$

$$
-5 y-5=-y-13
$$

$$
\frac{5 x}{5}=\frac{-y-13}{5}
$$

$$
+5 y+13+5 y+13
$$

$$
x=-\frac{y-13}{5}
$$

$$
\frac{8}{4}=\frac{4 y}{4}
$$

$y=2$

Graphing Inequalities with Two Variables 1. Put Equation in slope intercept form.
2. Find the slope and y intercept, then graph.

If < or >, use a dotted line
If \leq or \geq, use a solid line
3. Shade the region,

If < or \leq, shade below.
If $>$ or \geq, shade above.
Ex. $1 \quad x-y \geqslant 2$

$$
-y \geq-x+2
$$

$$
y \leq x-2
$$

$$
y=m x+b
$$

$$
\begin{gathered}
\text { Ex. } 2 \frac{-4 y}{-4}>\frac{-2 x}{-4} \frac{-12}{-4} \\
y>\frac{1}{2} x+3
\end{gathered}
$$

Systems of Inequalities

1. Graph the two Inequalities
2. The shared shaded region is the solutions

Ex. $1 \quad y>-x+4$

$$
y<\frac{1}{2} x-1
$$

