GSE Algebra 1 Unit 4 Exponential Functions Review	
1. A local newspaper said that the city of Luttrell is expected to grow by 8% each year. The population in 2010 is 160,000 people. Let t represent the number of years after 2010. Write an equation that could be used to determine the total expected population of Luttrell in tyears? $y=a(1+r)^{t}$	2. A population of 3 rabbits is released into a wild-life region. The population doubles each year for 5 years. Which of the following graphs represents this situation? A) C) B) D)
3. The table below represents the function F. A) $F(x)=3^{x}+1$ C) $F(x)=2^{x}+1$ B) $F(x)=3 x$ D) $F(x)=2 x+3$	4. What is the rate of change for the function $f(x)=4(2)^{\frac{x}{3}}$ over the interval $[9,15] ?$
5. Given the graph of $f(x)$ below, find	6. Write the explicit equation that represents the pattern in the table below?

7. A population of squirrels doubles every year. Initially there were 7 squirrels. A biologist studying the squirrels created a function to model their population growth, $P(t)=7(2)^{t}$ where t is time. The graph of the function is shown. What is the range of the function?)

A) any whole number greater than 7
B) any whole number greater than 0
C) any real number
D) any whole number greater than or equal to 7
8. The explicit formula for a geometric sequence is $a_{n}=4(-3)^{n-1}$. What is the seventh term of the sequence?
9. The function graphed on this coordinate grid shows $f(x)$, the height of a dropped ball in feet after its $x^{t h}$ bounce.

Number of Bounces
On which bounce was the height of the ball 4 feet?

What was the height of the ball on bounce 1 ?

How far was the ball dropped?
10. Find the $6^{\text {th }}$ term of the following geometric sequence.

$$
4,12,36, \ldots
$$

11. Find the average rate of change over the interval $[0,2]$ for both equations.

Equation A :

X	0	1	2	3
Y	1	2.5	5	7.5

Equation B :

Which statement is true for the average rate of change for the given interval?
A) The average rate of change of A is greater than B.
B) The average rate of change of B is greater than A.
C) The average rate of change for both is equal.
D) The answer cannot be determined from the given information.
12. A population of bees is decreasing. The population in a particular region this year is 1,200 . After one year, it is estimated that the population will be 900 . After three years, it is estimated that the population will be 506.25 (about 506 bees).
a. Write an equation to model this scenario.

$$
y=a(1-r)^{t}
$$

b. Create a graph to show the bee population over the next 10 years.
c. Identify the key features of the function. Identify the x and y-intercepts. Determine whether the function is increasing or decreasing, the rate of change of the function over the interval [0,10], and any asymptotes. Increasing or decreasing: \qquad
Rate of Change from $[0,10]$: \qquad
Asymptote: \qquad

13. Write a compound interest function to model the situation. Then find the balance after the given number of years. John invested $\$ 4000$ at a rate of 3.5% compounded quarterly for 4 years.
$A=P\left(1+\frac{r}{n}\right)^{n t}$
15. Graph $y=3^{x}$

x	y
-2	
-1	
0	
1	
2	

Domain:
Range:
x-intercept:
y-intercept:

Domain:	Range:
x-intercept:	y-intercept:

14. Write a compound interest function to model the situation. Then find the balance after the given number of years. Sarah invested $\$ 3000$ at a rate of 4% compounded annually for 5 years.

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

16. Graph $y=\left(\frac{1}{3}\right)^{x}$

x	y
-2	
-1	
0	
1	
2	

y-intercept:
17. Tell whether the functions below show exponential GROWTH or DECAY.
$y=\left(\frac{1}{4}\right)^{x}$
$y=1^{x}$
$y=5^{x}$
$y=0^{x}$
$y=\left(\frac{2}{3}\right)^{x}$

Identify whether the following sequences are arightmetic, geometric, or neither. If it is arithmetic, find d and if its geometric, find r. Then write the explicit formula.

Aritmetic Explicit Formula: $a_{n}=a_{1}+(n-1) d$
Geometric Explicit Formula: $a_{n}=a_{1} \cdot r^{n-1}$
18. 4, 10, 18, 28, 40...
20. 81, 27, $9,3,1$...
22. $-4,8,-16,32,-64 \ldots$
24. Graph the exponential functions.
$f(x)=4^{x}$
$f(x)=(3) 2^{x}$

\mathbf{x}	\mathbf{y}
-2	
-1	
0	
1	
2	

\mathbf{x}	\mathbf{y}
-2	
-1	
0	
1	
2	

x-intercept: $\quad y$-intercept:

x-intercept: $\quad y$-intercept:

x-intercept: y-intercept:

