Greatest common factor -The highest number or variable that divides exactly into two or more terms

Standard form:

$$
y=a x^{2}+b x+c
$$

Intercept form:

$$
y=a(x-p)(x-q)
$$

Ex. 1 find the GCF
(A) 12 and 15 \qquad 3
(B) $x^{2} y^{4}$ and x^{3}

$$
x^{2}
$$

$$
=\frac{x^{2} \mid x^{2} y^{4} x^{3}}{1^{4} x}
$$

Ex. 2 what is the GGF
(A) $3 x-6$
$(3) \frac{3 x-6}{x-2}$
3
(B) $5 x^{3}-15 x^{2}$ $5 x^{2}$
Ex. 3 Factor
(A) $3 x-6$
(3) $\frac{3 x-6}{x-2}$

$$
3(x-2)
$$

$$
3 x-6
$$

(B)

$$
\begin{aligned}
& 5 x^{3}-15 x^{2} 5 x^{2} \frac{5 x^{3}-15 x^{2}}{x-3} \\
& 5 x^{2}(x-3)
\end{aligned}
$$

Factoring quadratics 1. Put the quadratic in standard form. $a x^{2}+x+c$
2. Factor out GCF; make 'a' positive.
3. Multiply 'a' times 'c'.
4. Write out factors of 'ac'
5. Pick the factors that add to be 'b'.

Ex. 1 Factor the quadratic when $a=1 a=1 \quad b \in 8) c=7$

A

$$
\begin{aligned}
& b^{2}+8 b+7 \\
& (b+1)(b+7) \\
& (b+1)(b+7) \\
& b^{2}+7 b+b+7 \\
& \left.b^{2}+8 b+7\right)
\end{aligned}
$$

(B)

$$
\begin{aligned}
& k^{2}-13 k+40 \\
& a=1 \quad b=-13 c=40 \\
& (k-5)(k-8)
\end{aligned}
$$

Ex. 2 Factor the quadratic
when $a>1=5 \quad b-19) \quad c=12$
(A)

$$
\begin{array}{cc}
5 n^{2}+19 n+12 & \\
(5 n+6)\left(\frac{5 n}{5}+\frac{10}{5}\right) & \begin{array}{l}
5.12 \\
\\
60 \\
(5 n+6)(n+2) \\
\end{array} \\
\begin{array}{ll}
1.60 \\
& 3.30 \\
& 3.20 \\
& 4.5 \\
& 5.12 \\
& 5.10
\end{array}
\end{array}
$$

(B)

$$
\begin{array}{lc}
2 n^{3}+3 n^{2}-9 n & \\
n\left(2 n^{2}-3 n-9\right) & \begin{array}{c}
\text { abc } \\
n(2 n-3)(2 n+6) \\
2 .-9 \\
n(2 n-3)(n+3)) \\
\end{array} \begin{array}{c}
1.18 \\
2.9 \\
\hline-3.6
\end{array}
\end{array}
$$

Ex. 3 Factor the quadratic when there is no b.

$$
\begin{aligned}
& a x^{2}+b x+c \\
& \text { (A) } 9 x^{2}-1 \\
& a=9 \quad b=0 \quad c=-1 \\
& \begin{array}{ll}
\left(\frac{9 x}{3}-\frac{3}{3}\right)\left(\frac{9 x}{7}+\frac{3}{3}\right) & -9 \\
& 1.9
\end{array} \\
& (3 x-1)(3 x+1) \quad-3.3
\end{aligned}
$$

Ex. 4 Factor the quadratic when there is no c.

$$
\text { (A) } \quad \frac{3 x^{2}}{3 x}+\frac{12 x}{3 x}
$$

$$
3 x(x+4)
$$

Solving quadratić's
Solving by factoring

1. Factor the quadratic
2. Set factors equal to zero
3. Solve for X

Ex. 1 Solve by factoring

$$
\begin{aligned}
& \text { (A) } \\
& n^{2}-10 n+22=-2 / \\
& +2+2 \\
& n^{2}-10 n+24=0 \\
& a=1 \quad b=-10 \quad<=24 \\
& (n-4)(n-6)=0 \begin{array}{c}
a . c \\
1.24 \\
24
\end{array} \\
& \begin{array}{l}
n-y=0 \\
+4+4
\end{array} \\
& \begin{aligned}
n-4 & =0 \\
+6 & +6
\end{aligned} \\
& n=6 \\
& \begin{array}{l}
1.24 \\
\hline
\end{array} \\
& \begin{array}{r}
2.12 \\
3.8 \\
\hline-4.6 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (B) } \\
& \begin{array}{r}
6 n^{2}-18 n-18=6 / 6 \\
-6=6
\end{array} \\
& \frac{6 n^{2}}{6}-\frac{18 n}{6}-\frac{24}{6}=\frac{0}{6} \\
& n^{2}-3 n-4=0 \\
& a=1 \quad b=-3 \quad<=-4 \quad \text { ac } \\
& (n+1)(n-4)=0 \\
& n+イ=0 \quad \begin{array}{l}
(n+1)(n-4) \\
n=-1) \\
n-4=0 \\
+4
\end{array} \\
& \frac{1.4}{\frac{1.4}{1.4}} 2.2
\end{aligned}
$$

Solve by taking the square root *you can undo a square by taking the square root
Ex. 1 one step
(A)

$$
\begin{array}{r}
\sqrt{x^{z}}=\sqrt{25} \\
x= \pm 5 \quad x=5 \quad x=-5
\end{array}
$$

(B) $\sqrt{x^{2}}=\sqrt{32}$

$$
\begin{array}{r}
x= \pm \sqrt{32} \\
\quad \begin{array}{l}
\sqrt{16} \sqrt{2} \\
x= \pm 4 \sqrt{2}
\end{array} \\
\hline
\end{array}
$$

(C) $3 x^{2}-16 x=0$

Ex. 2 two step
(A)

$$
\begin{gathered}
x^{2}-y=9 \\
+7=7 \\
\sqrt{x^{2}}=\sqrt{16} \\
x= \pm 4
\end{gathered}
$$

(B)

$$
\begin{array}{ll}
\frac{2 x^{2}}{2}=\frac{14}{2} & \\
\sqrt{x^{2}}=\sqrt{7} & x= \pm \sqrt{7} \\
x= \pm 2.6
\end{array}
$$

Ex. 3 three step

$$
\begin{aligned}
& (x+3)^{2}-7=2 \\
& +7+7 \\
& \sqrt{(x+3)^{2}}=\sqrt{9} \\
& x+3= \pm 3 \\
& -6=-3 \\
& x= \pm 3-3 \\
& x=3-3 \quad x=-3-3 \\
& x=0 \\
& x=-6
\end{aligned}
$$

$$
\text { (B) } \begin{array}{rl}
3(x+3)^{2}-12 & =0 \\
\pm 12 & +12 \\
3(x+3)^{2} & =\frac{12}{3} \\
\sqrt{(x+3)^{2}} & =\sqrt{4} \\
x+7 & = \pm 2 \\
-13 & x= \pm 2-3 \\
& x=-1 \\
x=-5
\end{array}
$$

Completing the square

1. Put quadratic in standard form $a x^{2}+b x+c$
2. Move ' c ' to the other side of the equation $a x^{2}+b x-=-c$
3. Make 'a' one
4. Find the new ' c '. $c=\left(\frac{b}{2}\right)^{2}$
5. Add new ' c ' to both sides
6. Factor left side of equation 7. Solve for X

Ex. 1 Solve by completing the square.

A

$$
+2 / 2-22
$$

$$
\begin{array}{ll}
& \rho^{2}+16 p+(8)^{2}=22+(8)^{2} \\
a \cdot c & \left.\rho^{2}+16 p\right)+64=22+64 \\
64 & (\rho+8)(\rho+8)=86 \\
1.64 & \sqrt{(p+8)^{2}}-\sqrt{86} \\
2.32 & \rho+8= \pm \sqrt{86} \\
4.16 & -8-8 \\
8.8 & \\
& \rho=-8 \pm \sqrt{86}
\end{array}
$$

(B)

$$
\begin{gathered}
\frac{8 n^{2}}{2}+\frac{12 n+10}{2}=\frac{0}{2} \\
n^{2}+6 n+5=0 \\
n^{2}+6 n+(3)^{2}=-5+(3)^{2} \\
\sqrt{(n+3)^{2}}=\sqrt{4} \\
n+y= \pm 2 \\
-5=-3 \\
n=-3 \pm 2 \\
n=-1 \quad n=-5
\end{gathered}
$$

(C)

$$
\begin{gathered}
m^{2}-12 m+26=0 \\
-26=-26 \\
m^{2}-12 m+(-6)^{2}=-26+(-6)^{2} \\
\sqrt{(m-6)^{2}=\sqrt{10}} \\
m-4= \pm \sqrt{10} \\
+6+6 \\
m=6 \pm \sqrt{10}
\end{gathered}
$$

Quadratic formula

1. put quadratic in standard form $a x^{2}+b x+c$
2. Find 'a', 'b', and 'c' and plug them into the quadratic formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

EX. 1

$$
\begin{aligned}
& 2 x^{2}-3 x=5 \\
& a=2 \quad-5=-3 \quad c=-5 \\
& 2 x^{2}-3 x-5=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{+3 \pm \sqrt{(-3)^{2}-4(2)(-5)}}{2(2)} \\
& x=\frac{3 \pm \sqrt{9+40}}{4} \\
& x=\frac{3 \pm \sqrt{49}}{4} \\
& x=3 \pm 7
\end{aligned}
$$

$$
x=\frac{10}{4}=\frac{4}{\frac{5}{2}=2.5} \quad x=\frac{-4}{4}=-1
$$

Ex.2

$$
\begin{aligned}
& \text { x.2) } \begin{array}{l}
2 m^{2}-7 m-3=0 \\
a=2 \quad b=-7 \quad c=-3 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4(2)(-3)}}{2(2)}
\end{array} .=\frac{x^{2}}{2(2)}
\end{aligned}
$$

$$
\begin{gathered}
x=\frac{7 \pm 49+24}{4} \\
\left.x=\frac{7 \pm \sqrt{73}}{4}\right) \\
x=\frac{7+\sqrt{73}}{4} \quad x=\frac{7-\sqrt{73}}{4}
\end{gathered}
$$

Quadratic word problems

Ex. 1 The area of a square is 40 square centimeters. What is the length of one side of the square?

$$
\begin{aligned}
A=s^{2} \quad \sqrt{40} & =\sqrt{s^{2}} \\
s & = \pm \sqrt{40} \quad s=2 \sqrt{10}
\end{aligned}
$$

Ex. 2 The area of a circle is 60 square millimeters. What is the radius of the circle?

$$
\begin{aligned}
& A=\pi r^{2} \frac{60}{\pi}=\frac{\pi r^{2}}{\pi} \\
& \sqrt{r^{2}}=\sqrt{19.1} \\
& r=\sqrt{19.1}
\end{aligned}
$$

