Angles of Circles Notes

Central Angle: An angle whose vertex is at the center of a circle.
Inscribed Angle: An angle whose vertex is on the circle and whose sides contain chords of a circle.
Arc measure: The angle that an arc makes at the center of the circle of which it is a part.
Chord: A segment whose endpoints are on a circle.
$\angle B A C$ is a $\quad \angle B D C$ is a $\quad \angle B D C=\frac{1}{2} \angle B A C$

Examples

$m \angle A$
$m \angle G$

$m \overparen{R S}$

$m \overparen{W X}$

$m \angle A$

$m \angle N$

$m \overparen{V U}$

Inscribed Polygon Notes

Inscribed Polygon: A polygon whose vertices all lie on a circle.

Inscribed Right Triangle Theorem

If a right triangle is inscribed in a circle, then the hypotenuse is a diameter of the circle. Conversely, if one side of an inscribed triangle is a diameter of the circle, then the triangle is a right triangle and the angle opposite the diameter is the right angle.

$$
m \angle A B C=90^{\circ} \text { if and only if }
$$

$\overline{A C}$ is a diameter of the circle.
Inscribed Quadrilateral Theorem
A quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary.
D, E, F, and G lie on $\odot C$ if and only if
$m \angle D+m \angle F=m \angle E+m \angle G=180^{\circ}$.

Inscribed Angles of a Circle Theorem

If two inscribed angles of a circle intercept the same arc, then the angles are congruent.
$\angle A D B \cong \angle A C B$

Examples

Chord Angles

- A chord is a segment whose end points lie on the circumference of a circle.
- Find the measure of arcs and angles if the angle is inside the circle

$$
\text { Angle }=\frac{A r c+A r c}{2}
$$

Secant Angles

- A secant line is a line that intersects a circle at two points.
- Find the measure of arcs and angles if the angle is outside the circle.

$$
\text { Angle }=\frac{\text { Large Arc }- \text { Small Arc }}{2}
$$

Tangent Angles

- A tangent line is a line that intersects a circle at exactly one point.

Arc Length and Area of Sectors

Semicircle - half of a circle
Major arc - part of a circle that is larger than a semicircle
Minor arc - is a part of a circle that is smaller than a semicircle.

Area Formulas

$$
\begin{gathered}
\text { Circle }=\pi r^{2} \\
\text { Triangle }=\frac{1}{2} b \cdot h \\
\text { Rectangle }=b \cdot h \\
\text { Sector }=\frac{\pi r^{2} \theta}{360^{\circ}}
\end{gathered}
$$

Circumference $=2 \pi r$
Arc Length $=\frac{2 \pi r \theta}{360^{\circ}}$

- Arc length is a portion of the circumference

Find the circumference of the circle.

A circle with circumference 18 has an arc with a 120° central angle. What is the length of the arc?

Find the circumference of the circle.

A circle has a circumference of 17π. What is the radius of the circle?

The the legnth of the arc.

A circle has an arc length of 3π with a radius of 6 . Find the central angle of the arc.

- A Sector is a portion of a circle bounded by two radii and their intercepted arc.

Find the area of the circle.

Find the area of the sector.

A circle with area 4π has a sector with a 90° central angle. What is the area of the sector?

A circle has an area of 25π.
Find the area of the segment.
What is the radius of the circle?

