## Angles of Circles Notes

Central Angle: An angle whose vertex is at the center of a circle.

Inscribed Angle: An angle whose vertex is on the circle and whose sides contain chords of a circle. Arc measure: The angle that an arc makes at the center of the circle of which it is a part. Chord: A segment whose endpoints are on a circle.



#### **Examples**



 $m \angle G$ 





В

mBCA



 $m \angle D$ 



mRS



mWX



 $m \angle N$ 

m∠A



mVU



Inscribed Polygon: A polygon whose vertices all lie on a circle.

| Inscribed Right Triangle Theorem                                                                                                                                                                                                                                           |                                                                                                           | A |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---|
| If a right triangle is inscribed in a circle, then the hypotenuse is a diameter of the circle. Conversely, if one side of an inscribed triangle is a diameter of the circle, then the triangle is a right triangle and the angle opposite the diameter is the right angle. |                                                                                                           | B |
| $m \angle ABC = 90^\circ$ if and only if $\overline{AC}$ is a diameter of the circle.                                                                                                                                                                                      |                                                                                                           |   |
| Inscribed Quadrilateral Theorem                                                                                                                                                                                                                                            |                                                                                                           | F |
| A quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary.                                                                                                                                                                         |                                                                                                           |   |
| D, E<br>m∠                                                                                                                                                                                                                                                                 | F, F, and G lie on $\odot$ C if and only if<br>$D + m \angle F = m \angle E + m \angle G = 180^{\circ}$ . | D |
| Inscribed Angles of a Circle Theorem                                                                                                                                                                                                                                       |                                                                                                           | A |
| If two inscribed angles of a circle intercept the same arc, then the angles are congruent.                                                                                                                                                                                 |                                                                                                           | D |
|                                                                                                                                                                                                                                                                            | $\angle ADB \cong \angle ACB$                                                                             | B |

# Examples













### **Chord Angles**

- A chord is a segment whose end points lie on the circumference of a circle.
- Find the measure of arcs and angles if the angle is inside the circle



#### **Secant Angles**

- A secant line is a line that intersects a circle at two points.
- Find the measure of arcs and angles if the angle is outside the circle.



#### **Tangent Angles**

- A tangent line is a line that intersects a circle at exactly one point.



## Arc Length and Area of Sectors

Semicircle – half of a circle

Major arc – part of a circle that is larger than a semicircle Minor arc – is a part of a circle that is smaller than a semicircle.

|                                                      | Area Formulas                                                                                                             |                                                                            |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| $r = radius$ $d = diameter$ $\theta = central angle$ | $Circle = \pi r^{2}$ $Triangle = \frac{1}{2}b \cdot h$ $Rectangle = b \cdot h$ $Sector = \frac{\pi r^{2}\theta}{360^{o}}$ | $Circumference = 2\pi r$ $Arc \ Length = \frac{2\pi r\theta}{360^{\circ}}$ |



A circle with circumference 18 has an arc with a  $120^{\circ}$  central angle. What is the length of the arc?

A circle has a circumference of  $17\pi$ . What is the radius of the circle?

A circle has an arc length of  $3\pi$  with a radius of 6. Find the central angle of the arc.

- A Sector is a portion of a circle bounded by two radii and their intercepted arc.

