Equations of Circles

Ex. 1 Write the equation of the circle given it has a center at $(7,-10)$ and a radius of 9 .

Ex. 2 Find the coordinates of the center and the radius.

$$
(x+13)^{2}+(y-5)^{2}=49
$$

Ex. 4

Ex. $6 x^{2}+y^{2}=24$

Ex. 7 Write the equation of a circle given the point $(2,1)$ on a circle with the center at $(-1,3)$.

Converting from general form to standard form.

$$
a x^{2}+b y^{2}+c x+d y+e=0 \quad \rightarrow \quad(x-h)^{2}+(y-k)^{2}=r^{2}
$$

1. (a) needs to be one.
2. Move the x and y terms together.
3. Move (e) to the other side.
4. Complete the square.
5. Factor the left side.
6. Simplify.

$$
\text { Ex. } 8 x^{2}+y^{2}+4 x-6 y-3=0 \quad \text { Ex. } 9 x^{2}+y^{2}-8 x+7=0
$$

Ex. $102 x^{2}+2 y^{2}-16 x+4 y+20=0$

Ex. 11 Standard to general form (expand and multiply).

$$
(x-4)^{2}+(y+3)^{2}=36
$$

Slope

Slope - is the steepness of a line.

Ex. 1 Find the slope of the line.

Ex. 3 Find the slope between the points $\mathrm{A}(-2,-3)$ and $B(6,4)$.

Ex. 2 Find the slope of the line.

Ex. 4 Find the slope between the points $A(-5,4)$ and $B(-10,4)$.

Graphing in slope intercept form
Slope intercept form $y=m x+b$
$m=$ slope
$b=y$ intercept

Ex. 5 Graph $y=-\frac{2}{3} x+1$

Ex. 6 Graph $2 y-4 x=-8$

Ex. 7 Graph $y=\frac{5}{2} x-4$

Ex. 8 Graph $y=2$

	Parallel and Perpendicular Lines Perpendicular Lines - intersect at right angles - slopes are opposite reciprocals	Parallel Lines - do not intersect - have the same slope
have one common point.		

Are the lines parallel, perpendicular, or neither?

Ex. 9

$$
\begin{aligned}
& y=-3 x+4 \\
& y=-3 x-2
\end{aligned}
$$

Ex. 10

$y=2 x-3$

Ex. 11

$$
\begin{aligned}
& 2 y=x+6 \\
& y=\frac{1}{2} x+3
\end{aligned}
$$

Ex. 13

$$
\begin{gathered}
y=4 \\
x=-2
\end{gathered}
$$

Ex. 12

$$
\begin{gathered}
y=\frac{1}{3} x-1 \\
y=-3 x+4
\end{gathered}
$$

Ex. 14

$$
y=\frac{1}{4} x-3
$$

$$
x=3
$$

Ex. 16 Is the parallelogram a rectangle?

Finding equations of parallel lines given a line and a point.

1. Put the equation of the line in slope intercept form.

$$
y=m x+b
$$

2. Take out the slope (m) and plug in the point (x, y) into the point slope formula.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

3. Solve for y.

Ex. 1 Write the equation of the line that passes through $(-1,6)$ and is parallel to $y=2 x+4$.

Finding equations of perpendicular lines given a line and a point.

1. Put the equation of the line in slope intercept form.

$$
y=m x+b
$$

2. Plug in the opposite reciprocal slope from step 1 and plug in the point (x, y) into the point slope formula.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

3. Solve for y.

Ex. 2 Write the equation of the line that passes through ($-2,8$) and is perpendicular to $y=4 x+1$.

Ex. 3 Write the equation of the line that passes through $(-2,0)$ and is parallel to the line below.

Ex. 4 Write the equation of the line that passes through $(2,-2)$ and is perpendicular to the line below.

The coordinates

The coordinates
of point T
are $(5,2)$.

Examples: Give the coordinates of each point:
A \qquad , \qquad B \qquad , \qquad) C(\qquad , -
$D($ \qquad , ___) E(, ___) G(\qquad , ——)

Which quadrant contains the following points:
A: \qquad B: \qquad C: \qquad
D: \qquad E : \qquad G: \qquad

Graph the following points:
$H(7,10) J(-5,2) K(-1,-8)$

Distance

To find distance between two points on a coordinate plane:

- If Horizontal or Vertical Line: Use Ruler Postulate (count the spaces between the points)
- Not a Horizontal or Vertical Line: Use Distance Formula or Pythagorean Theorem

Distance Formula

The distance between any two points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Pythagorean Theorem

$$
a^{2}+b^{2}=c^{2}
$$

Ex. 1 Find the distance between $\mathrm{T}(5,2)$ and $\mathrm{R}(1,1)$.

Ex. 2 Find $\overline{P Q}$ if $\mathrm{P}(-3,-5)$ and $\mathrm{Q}(2,3)$.

Area and Perimeter in the Coordinate Plane

Area Formulas	Distance Formula	Perimeter is the sum of all the sides.
Circle $=\pi r^{2}$	$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	Circumference $=2 \pi r$
Triangle $=\frac{1}{2} b \cdot h$	Pythagorean Theorem	
Rectangle $=b \cdot h$	$a^{2}+b^{2}=c^{2}$	

EX. 1 Find the area and perimeter of figure $A B C D$ with coordinates $A(-1,0), B(1,-1), C(0,-3)$, and $D(-2,-2)$.

EX. 3 Find the area and perimeter of figure LMN with coordinates $\mathrm{L}(-6,2)$, $\mathrm{M}(-4,-3)$, and $\mathrm{N}(-6,-3)$.

EX. 5 Find the area and perimeter of figure STR with coordinates $\mathrm{S}(-2,-1), \mathrm{T}(2,2)$, and $\mathrm{R}(3,-2)$.

EX. 2 Find the area and perimeter of figure QRST with coordinates $\mathrm{Q}(-7,-4), \mathrm{R}(-3,-4), \mathrm{S}(-2,-7)$, and $\mathrm{T}(-6,-7)$.

EX. 4 Find the area and perimeter of figure ABC with coordinates $\mathrm{A}(1,0), \mathrm{B}(2,3)$, and $\mathrm{C}(6,0)$.

EX. 6 Find the area and circumference of the circle.

Midpoint: On a Number Line The coordinate of the midpoint is the AVERAGE of the coordinates of the endpoints The midpoint between a and b is: $\frac{a+b}{2}$

Ex. 3 Find the midpoint between A and D.

Midpoint: In the Coordinate Plane The coordinate of the midpoint between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is the average of the x coordinates and the average of the y coordinates:

$$
\text { midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Ex. $4 \overline{Q S}$ has endpoints $Q(3,5)$ and $S(7,-5)$. Find the coordinates of its midpoint.

Ex. $5 \overline{C D}$ has endpoints $C(-2,6)$ and $D(5,4)$. Find the coordinates of its midpoint.

Use the midpoint formula to find the missing endpoint in the following examples.
Ex. 6 The midpoint of $\overline{A B}$ is $\mathrm{M}(0,1)$. One endpoint is $\mathrm{A}(-3,-2)$. Find the coordinates of the other endpoint B.

Step 1: Plug in everything given. Let the coordinates of B be $\left(x_{2}, y_{2}\right)$

Step 2: Set the x coordinate on the left equal to the x coordinate equation on the right. Do this for the y coordinates also.

Step 3: Solve using algebra.

Ex. 7 The midpoint of $\overline{S T}$ has coordinates (2,-3). S has coordinates (4,-6). Find the coordinates of T.

