\qquad
Line Vocabulary

Vocabulary:	Picture:	Notation:
Point- an exact position or location in a given plane		
Line- a set of two points in a plane and the infinite number of points that continue beyond the points.		
Line segment- a line with two end points.		
Ray- is defined by two points, one is an endpoint.		
Parallel lines- two lines that will never intersect.		
Perpendicular lines- two lines that meet at a right angle.		
Angle- is formed where two line segments or rays share an end point.		

Naming Angles

The vertex is the point where two rays meet to from an angle.

Angles can be named in the following ways:

- By three capital letters, with the vertex letter in the middle.
- By one capital letter, this can only be used if it is the only angle it could be.
- By the lower case letter or number written in the middle of the angle.

Ex. 1 Name the angle in the figure.

Ex. 2 Name the angles in the figure.

Types of Angles

Acute angle - measures less than 90 degrees but greater than zero degrees.

Obtuse angle - measures greater than 90 degrees but less than 180 degrees.

Right angle - measure exactly 90 degrees.
Straight - an angle that measure 180 degrees

Angle Addition Postulate If you two angles are side by side, then the measure of the resulting angle will be equal to the sum of the two original angle measures.

$$
m \angle R S P+m \angle P S T=m \angle R S T
$$

$m \angle R S P+m \angle P S T=m \angle R S T$
Ex. 8 Determine the following and use correct notation.
a. Identify a line in the submitted logo.
b. Identify a ray in the submitted logo.
c. Identify a line segment in the submitted logo.
d. Identify two pairs of parallel line segments in the submitted logo.
e. Identify one pair of perpendicular lines in the submitted logo

Ex. 3 Classify the angles. Ex. 4

Ex. 7 Find the measure of $\angle P T M$.

\qquad

Angles Vocabulary

Congruent angles - two or more angles with the same measure.
Complementary Angles- two angles whose sum is 90°.

Ex. 1

Ex. 2

Supplementary Angles - two angles whose sum is 180°.

$$
\text { Ex. } 3
$$

Vertical angle - Two angles that share a common vertex and their sides form two pairs of opposite rays. Vertical angles are congruent.

\qquad

Transversal Notes

- A transversal is a line that intersects a system of two or more lines at different points.
- Two lines are parallel if they do not intersect.
- Perpendicular lines are two lines that intersect at a right angle.

Corresponding Angles Postulate:

If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.

$$
\begin{array}{ll}
\angle —=\angle- & \angle —=\angle \\
\angle —=\angle- & \angle —=\angle-
\end{array}
$$

Alternate Interior Angles Theorem:

If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.

$$
\begin{aligned}
& \angle _=\angle- \\
& \angle —=\angle —
\end{aligned}
$$

Consecutive Interior Angles Theorem:

(Same Side Interior Angles)
If two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are supplementary.

$$
\begin{aligned}
& \angle _+\angle _= \\
& \angle —+\angle=
\end{aligned}
$$

Perpendicular Transversal Theorem:

If a transversal is perpendicular to one of the two parallel lines, then it is perpendicular to the other.

Ex. 1 Identify the angles as corresponding, al interior, alternate exterior, consecutive inte consecutive exterior. 1. $\angle 3$ and $\angle 7$ \qquad 2. $\angle 4$ and $\angle 10$ 3. $\angle 5$ and $\angle 8$ \qquad 4. $\angle 8$ and $\angle 6$ \qquad 5. $\angle 9$ and $\angle 5$ \qquad 6. $\angle 5$ and $\angle 7$ \qquad	
Ex. 2	Ex. 3
Ex. 4	Ex. 5
Ex. 6	Ex. 7
Ex. 8	Ex. 9

\qquad Block: \qquad

Triangle Notes

- Triangle Sum Theorem- the sum of the angle measures of a triangle is 180 degrees.
- A scalene triangle has no congruent sides.

Ex. 1

Ex. 2

- An isosceles triangle has two congruent angles and two congruent sides.

Ex. 3

Ex. 4

- An equilateral triangle has three congruent sides.
- An equiangular triangle has three congruent angles.
- If a triangle is equilateral then it is also equiangular and vice versa.

Ex. 5

Ex. 6

- Exterior Angle Theorem - the measure of an exterior angle of a triangle is equal to the sum of the measures of its remote interior angles.

$$
\angle A+\angle B=\angle D
$$

Ex. 8

Side-Side-Side
If three corresponding sides are
congruent in two triangles, then the
triangles are congruent.

Name the additional information that is sufficient to prove that the triangles are congruent by the given criteria.

Additional information: \qquad \cong
10. $\triangle \mathrm{ABC} \cong \triangle \mathrm{FED}$ by SAS

Additional information: \qquad \cong
11. $\triangle \mathrm{DEF} \cong \Delta \mathrm{JIH}$ by ASA

$$
\angle \mathrm{D} \cong \angle \mathrm{~J}, \mathrm{DE} \cong \mathrm{JI}, ?
$$

Additional information: \qquad \cong

- Reflexive property: any quantity is equal to itself.
- Midpoint: a point that divides a segment into two congruent segments.
- Bisect: divide into two equal parts
- If two or more triangles are proven congruent, then all of their corresponding parts are congruent.
- CPCTC: corresponding parts of corresponding triangles are congruent

