### **Geometric Constructions**

## 1. Copying a segment



#### 2. Bisect a segment (find the midpoint)



A'

### 3. Copy an angle





2. Construct a line perpendicular to a given segment through a point on the line.



3. Construct a line perpendicular to a given line through a point not on the line.



## COPYING A SEGMENT

| <b>COPYING A SEGMENT</b><br>1. Given $\overline{AB}$ , $\overline{CD}$ , & $\overline{EF}$ . Use the copy segment<br>construction to create the new lengths listed below. | $A \xrightarrow{\bullet} B \\ C \xrightarrow{\bullet} D \\ E \xrightarrow{\bullet} F$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| ЗАВ                                                                                                                                                                       |                                                                                       |
| CD + EF                                                                                                                                                                   |                                                                                       |
| 2CD + 1AB                                                                                                                                                                 |                                                                                       |
| EF - CD                                                                                                                                                                   |                                                                                       |

## CONSTRUCTING A MIDPOINT







4. Given  $\angle ABC$ . Make a copy of  $\angle ABC$ ,  $\angle A'B'C'$ .





5. Given  $\angle DEF$ . Make a copy of  $\angle DEF$ ,  $\angle D'E'F'$ .





4. Given  $\angle A$ , construct the angle bisector, ray  $\overrightarrow{AD}$ .





5. Given sides of a rectangle. Construct the rectangle. Hint - We need perpendicular lines through A and through B.



6. Given the side of a square. Construct the square.



## **Geometric Constructions**

Name: \_\_\_\_\_

## Construct congruent segments.

Construct a segment congruent to  $\overline{AB}$  .



## Construct congruent angles

Construct an angle congruent to  $\angle A$ . 1.



Your construction here:



## Perpendicular bisector



## Angle Bisector







4.



Perpendiculars, on a point on a line.



Perpendiculars, on a point NOT on a line.



1. Construct an inscribed equilateral triangle.



2. Construct an inscribed square.



3. Construct an inscribed hexagon.



# 4. Circumscribe a Circle around a Triangle

- 1) Construct perpendicular bisectors for the sides of the triangle. They meet at the circumcenter.
- 2) Draw a circle with center at the circumcenter, and radius going out to a corner of the triangle. This circle will intersect all three vertices of the triangle, so it is the circumscribed circle.



# 5. Inscribe a Circle within a Triangle

- 1) Construct the angle bisectors for the vertices of the triangle. They meet at the *incenter*.
- 2) Construct a perpendicular line segment from the incenter to any side of the triangle.
- 3) Draw a circle with center at the incenter, and radius extending out to the intersection of the perpendicular from (2) with the side.



# 6. Orthocenter of a Triangle

1) Construct altitudes for each side of the triangle. Their intersection is the orthocenter.



# 7. Centroid of a Triangle

1) Construct medians for the vertices of the triangle. Their intersection is the centroid!



# 8. Median of a Triangle

- Construct the midpoint of a side of the triangle. 1) 2)
- Construct a line segment from the vertex opposite the side to the midpoint. That's the median!



# 9. Midsegment of a Triangle

- 1) Construct midpoints for two sides of a triangle.
- 2) Draw a segment connecting the midpoints. That's the midsegment!



**10.** Given  $\triangle ABC$ , construct a copy of it,  $\triangle A'B'C'$ .



**11. Circumscribe a circle about each rectangle.** 



