Proving Theorems about Lines and Angles

Angle Vocabulary

- Complementary- two angles whose sum is 90 degrees.
- Supplementary- two angles whose sum is 180 degrees.

- Congruent angles- two or more angles with the same measure.
- Angle bisector- a ray or a line segment that divides an angle into two congruent angles.
- Vertical angles- are nonadjacent angles formed by two pairs of opposite rays. vertical angles are congruent.
- Linear pair- two adjacent angles whose non shared sides form a straight angle. Linear pairs are supplementary.

Ex. 1 angle one and two are complementary. Solve for x and the measure of both angles. $\quad \angle 1=5 x+2$

$$
2 x+4+5 x+2=90
$$

$$
\xrightarrow[5 x+2]{62} \quad \begin{aligned}
& 7 x+6=90 \\
& -6=6 \\
& \frac{7 x}{7}=\frac{84}{7}
\end{aligned} x=12
$$

Ex. 2 angle one and two are supplementary. Solve for x and the measure of both angles.

Ex. 3 Find angle three and four if...

Lines and Transversals

- Transversal- is a line that intersects a system of two or more lines.

\rightarrow same side exterior L's
$\angle 2 \% \angle 8$
corresponding $\angle \prime s$
are $\cong \angle 4\} \angle 8$
- Two line are parallel if they do not intersect.
- Perpendicular lines are two lines that . intersect at a right angle.
- Corresponding angles- angles with the same relative position with spect to the transversal and the intersecting lines.
- Corresponding angles are congruent $\angle 1=\angle 5$
- Alternate interior angles- are on opposite sides of the transversal and lie on the interior of the two lines that the
transversal intersect.
- Alternate interior angles are congruent.

$$
\angle 5=\angle 4
$$

- Same side interior angles- are angles that lie on the same side of the transversal and are in between the lines that the transversal intersects.
- Same side interior angles are supplementary.

$$
\angle 6+\angle 4=180^{\circ}
$$

- Alternate exterior angles- are angles that are on the opposite sides of the transversal and lie on the exterior of the two lines that the transversal intersects.
- Alternate exterior angles are congruent.

$$
\angle 1=\angle 8
$$

- Perpendicular Transversal Theorem- if a transversal is perpendicular to one of the two parallel lines, then it is perpendicular to the other.

Ex. 1

$$
180=70
$$

Ex. 2
$180-120$

Ex. 3

$$
\pi 80^{\circ} \quad 1
$$

Ex. 4

Proving Theorems about Triangles

- Triangle Sum Theorem- the sum of the angle measures of a triangle is 180 degrees.
- Scalene triangle- no congruent sides.
- Isosceles triangles- two congruent sides.
- Equilateral triangles- three congruent sides.
- Exterior Angle Theorem- the measure of an exterior angle of a triangle is equal to the sum of the measures of its remote interior angles.

Ex. 1 Find angle C.

Ex. 2 Find the missing angles.

$$
\begin{gathered}
4(15)+60 \\
3 x-10+4 x+60+25=180 \\
7 x+78=180 \\
-75-75 \\
\frac{7 x}{120}=\frac{105}{7} \\
x=15
\end{gathered}
$$

- Equiangular-all angles are congruent.
- If a triangle is equilateral then it's equiangular.
- If a triangle is equiangular, then it is equilateral.

Ex. 3 Find the measure of each angle.
$180-72-72$

Ex. 4 Find the values for x and y.

$$
\frac{180}{3}=60
$$

$$
\begin{gathered}
4 x+2 y=60 \\
-24-24 \\
4 x=36 \\
4=\frac{3}{4} \\
x=9
\end{gathered}
$$

$$
\begin{aligned}
& 120=11 y-27 \\
& +23 \\
& \frac{143}{11}=\frac{4 y}{11} \\
& y=13
\end{aligned}
$$

Congruent Triangles

- If two or more triangles are proven congruent, then all of their corresponding parts are congruent.

Criteria for Congruence - side-side-side (SSS)

- Side-angle-side (SAS)

- Angle-side-angle (ASA)

- Angle-angle-side (AAS)

- Hypotenuse-Leg (HL)

Ex. 1 Determine which congruence statement can be used for the triangles.

(B) PAS

[D]

SSA ASS
not enough information.

Two Column Proofs

- Reflexive property: any quantity is equal to itself.
- Midpoint: a point that divides a segment into two congruent segments.
- Bisect: divide into two equal parts
- CPCTC: corresponding parts of corresponding triangles are congruent

Ex. 1 Given: $\overline{A B} \cong \overline{C D}, \overline{A D} \cong \overline{C B}$

Statements	Reasons
(1) $\overline{A B} \cong \overline{C D}$	(1) Given
(2) Given	
(3) $\overline{A D} \cong \overline{C B}$	(3) Refarive
(4) $\triangle A B D \cong \triangle D B D$	(4) SSerty

Ex. 2 Given: $\overline{A E}$ bisects $\overline{B D}, \angle B \cong \angle D$

Ex. 3 Given: $\overline{A B} / / \overline{E D}, \overline{A C} \cong \overline{E C}$

(12) $S A S$
(14) $\triangle L M N$

