Angles of Circles Notes
Central Angle: An angle whose vertex is at the center of a circle.
Inscribed Angle: An angle whose vertex is on the circle and whose sides contain chords of a circle.
Arc measure: The angle that an arc makes at the center of the circle of which it is a part.
Chord: A segment whose endpoints are on a circle.

In words, how can you find $\angle C A B$? What is

In words, how can you find $\angle C D B$? What is $\angle C D B$? \qquad

What can be said about arc measures and central angles? \qquad angl es are the same.

Inscribed Polygon Notes

Inscribed Polygon: A polygon whose vertices all lie on a circle.
Inscribed Right Triangle Theorem
If a right triangle is inscribed in a circle, then the hypotenuse is a diameter of the circle.
Conversely, if one side of an inscribed triangle is a diameter of the circle, then the triangle
is a right triangle and the angle opposite the diameter is the right angle.

\[

\frac{m \angle A B C=90^{\circ} if and only if}{A C is a diameter of the circle.}\)| Inscribed Quadrilateral Theorem |
| :--- |
| A quadrilateral can be inscribed in a circle if and only if its opposite angles are |
| supplementary. |
| $\qquad D, E, F \text {, and } G \text { lie on } \odot C \text { if and only if }$ |
| $m \angle D+m \angle F=m \angle E+m \angle G=180^{\circ} .$ |

\]

Inscribed Angles of a Circle Theorem
If two inscribed angles of a circle intercept the same arc, then the angles are congruent.
$\angle A D B \cong \angle A C B$

Examples

$m \angle N$

$180-160=20$

$$
\begin{aligned}
& 180-60=120 \\
& k=60 \\
& 60=180 \\
&-60=-60 \\
& \frac{2 k}{2}=\frac{120}{2}
\end{aligned}
$$

Circles

- Pi is the ratio of the circumference to the diameter of a circle.
- A circle is a set of all points that are equidistant from a fixed point.
- Concentric circles share the same center.

- Semicircle- is half a circle, 180 degrees.
- Major Arc- part of a circle
that is larger than a semicircle.
- Minor arc- is a part of a circle that is smaller than a semicircle.
- Central angle- is an angle created with the vertex and two radii.
- Inscribed angle- formed when two cords whose vertex is on the circle.

- Intercepted arc- is an arc whose end points lie on the sides of an angle and whose other points are in the interior of the angle.
- Inscribed Angle Theorem: the measure of an inscribed angle is half the measure of its intercepted arcs angle.

Corollary 1

- Two inscribed angles that intercept the same arc are congruent.

Corollary 2

- An angle inscribed in a semicircle is a right.

Ex. 1 A car has a circular turning radius of 15.5 feet. The distance between the two front tires is 5.4 feet. To the nearest foot, how much farther does a tire on the outer edge of the turning radius travel than a tire on the inner edge if the car travels in one complete circle?

Ex. 2 Find the value of each variable.

Ex. 3 Find the measure of angle BAC and BDC.

Ex. 4 Find BDC.

Ex. 5 Find the value for y.

Inscribed Quadrilaterals

- Is a quadrilateral whose vertices are on a circle.
- Opposite angles of an inscribed quadrilateral are supplementary.

$m \angle A+m \angle C=180^{\circ}$ $m \angle B+m \angle D=180^{\circ}$

Ex. 1 Find the missing angles.

Ex. 2

Secant angle

Circumscribed angle - the angle formed by two tangent lines whose vertex is outside of the circle is called the circumscribed angle.

Ex. 1

$$
\begin{gathered}
\frac{a+b}{2}=c \\
\frac{80+70}{2}=x \\
75=x
\end{gathered}
$$

$180-75$
Ex. 2

$$
\begin{aligned}
& \frac{a-b}{2}=c \\
& \frac{100-30}{2}=x \\
& 35=x
\end{aligned}
$$

Ex. 3

Ex. 4

$$
\begin{gathered}
360-240=120 \\
\frac{a-b}{2}=c \\
\frac{240-120}{2}=x \\
\frac{120}{2}=x \\
60=x
\end{gathered}
$$

Ex. 5

Ex. 6

Radians

- Radian- a unit for measuring angles. One Radian is equal to length of the radius.

Ex. 1 convert 40 degrees to radians.

$$
\begin{aligned}
& \text { adians. } \\
& \frac{40^{x}}{1} \rightarrow \frac{\pi}{180^{x}}=\frac{48 \pi}{188}=\frac{4 \pi}{18}=\frac{2 \pi}{9}
\end{aligned}
$$

Ex. 2 convert $\frac{3 \pi}{4}$ to degrees.

$$
\frac{3 x x \rightarrow}{4 \rightarrow \frac{180}{x}}-\frac{540^{\circ}}{135^{\circ}}
$$

Arc Length

- Circumference- the distance around a circle

$$
C=2 \pi r
$$

- Arc length- portion of the circumference. Arc Lang th $=\frac{2 \pi r \theta}{360^{\circ}}$
- Central angle- an angle with its vertex at the center of a circle.

Ex. 1 What is the circumference of a circle that has an area of $1,000 \mathrm{~m}^{2}$?

Ex. 2 A circle has a radius of 3.8 units. Find the arc intercepted by a central angle measuring 120 degrees.

Ex. 3 a circle has a diameter of 20 feet. Find the length of an arc intercepted by a central angle measuring 36 degrees.

Find the are length

$$
\begin{aligned}
A L & =\frac{2 \pi r \theta}{360^{\circ}} \\
A L & =\frac{2 \pi(6)(36)}{360^{\circ}} \\
A L=2 \pi & \approx 6.28
\end{aligned}
$$

Ex. 4 a circle has a radius of 4 units. Find the central angle that intercepts an arc of length 10.8 units.

$$
\begin{gathered}
\text { Find } \theta \\
A L=\frac{2 \pi r \theta}{360} \\
360(10.8)=\left(\frac{2 \pi(4) \theta}{360}\right) 366 \\
\frac{3888}{(8 \pi)}=\frac{2 \pi 4 \theta}{8 \pi} \\
\theta=155^{\circ}
\end{gathered}
$$

Ex. 1 Show how the perimeter of a hexagon can be used to find an estimate for the circumference a circle that has a radius of 5 meters.

Ex. 2 show how the area of a hexagon can be used to find an estimate for the area of a circle that has a radius of 5 meters.

$$
\begin{aligned}
& 12(5.4)=\frac{64.8 \mathrm{~m}^{2}}{2} \\
& A=\pi r^{2} \quad A=\frac{1}{2} b h \\
& =\pi(s)^{2} \\
& =\frac{1}{2}(2.5)(4.3) \\
& =78.5 \mathrm{~m}^{2}=5.4 \\
& a^{2}+b^{2}=c^{2} \\
& \begin{array}{l}
2.5^{2}+b^{2}=5^{2} \\
-2.5^{2} \sqrt{b^{2}}=\sqrt{18.75} \quad b=4.3
\end{array}
\end{aligned}
$$

Areas of Sectors

- Area of a circle- $A=\pi r^{2}$
- A sector is a portion of a circle bounded by two radii and their intercepted arc.

$$
\begin{aligned}
& \text { Area sector }=\frac{\pi r^{2} \theta^{K}}{360} \\
& \text { Area Sector }=\frac{\pi r^{2} \theta}{2 \pi} \nprec \text { radians }
\end{aligned}
$$

Ex. 1 Find the area of a circle that has a circumference of 100 meters.

$$
\begin{gathered}
c=100 \\
c=2 \pi r \\
\frac{100}{(2 \pi)}=\frac{2 \pi r}{2 \pi}
\end{gathered} \quad \begin{gathered}
A=\pi r^{2} \\
A=\pi(15.9)^{2} \\
A=252.8 \pi \approx 794
\end{gathered}
$$

Ex. 2 a circle has a radius of 8 units. Find the area of a sector with a central angle of 135.

Find the area of the sector.

$$
A S=\frac{\pi r^{2} \theta}{360^{\circ}}
$$

$$
A S=\frac{\pi(8)^{2}(135)}{360}
$$

$$
A S=24 \pi \approx 75.4
$$

Ex. 3 A circle has a radius of 24 units. Find the area of a sector with a central angle of 30 degrees.

$$
\begin{aligned}
& A S=\frac{\pi r^{2} \theta}{360} \\
& A S=\frac{\pi(24)^{2}(30)}{360} \\
& A S=48 \pi \approx 150.8
\end{aligned}
$$

Ex. 4 a circle has a radius of 6 units. Find the area of a sector with an arc length of 9 units.

Find θ

$$
\begin{aligned}
& A L=\frac{2 \pi r \theta}{360} \\
& 9=\left(\frac{(2 \pi(6) \theta}{36 \theta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3240}{12 \pi}=\frac{2 \pi 6 \theta}{12 \pi} \\
& \theta=86
\end{aligned}
$$

$$
A S=\frac{7 r^{2} \theta}{360}=\frac{\pi(6)^{2}(86)}{360}=\frac{43 \pi}{5} \approx 27
$$

$$
A S=8.6 \pi=\frac{43 \pi}{5}=27 \mathrm{u}^{2}
$$

