Operations of Matrices

- A matrix having m rows and n columns has the dimensions $m \times n$.
- A matrix is square if $m=n . \quad\left[\begin{array}{ccc}0 & 2 & 4 \\ -1 & 3 & 0\end{array}\right]$ 2×3
Ex. 1 What are the dimensions of the matrix?
a) $\left[\begin{array}{llll}1 & -3 & 0 & \frac{1}{2}\end{array}\right] \quad 1 \times 4$
b) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \quad 2 \times 2$
c) $\left[\begin{array}{rr}5 & 0 \\ 2 & -2 \\ -7 & 4\end{array}\right] \quad 3 \times 2$

Addition of Matrices

- You can add Matrices (of the same dimensions) by adding their corresponding parts.

$$
\operatorname{Ex.2}\left[\begin{array}{cc}
-1 & 2 \\
0 & 1
\end{array}\right]+\left[\begin{array}{rr}
1 & 3 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
0 & 5 \\
-1 & 3
\end{array}\right]
$$

Ex. $3\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]+\left[\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right]+\left[\begin{array}{l}0 \\ 1 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right]$

Scalar Multiplication and Matrix Subtraction

- You can multiply a matrix by a scalar c by multiplying each entry by c.

$$
\begin{gathered}
\text { Ex. } \left.4 \begin{array}{c}
3
\end{array} \begin{array}{ccc}
2 & 2 & 4 \\
-3 & 0 & -1 \\
2 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
6 & 6 & 12 \\
-9 & 0 & -3 \\
6 & 3 & 6
\end{array}\right] \\
\text { Ex. } 5\left[\begin{array}{ccc}
6 & 6 & 12 \\
-9 & 0 & -3 \\
6 & 3 & 6
\end{array}\right]-\left[\begin{array}{ccc}
-2 & 0 & 0 \\
-1 & +4 & -3 \\
+1 & -3 & -2
\end{array}\right] \\
{\left[\begin{array}{ccc}
4 & 6 & 12 \\
-10 & 4 & -6 \\
7 & 0 & 4
\end{array}\right]}
\end{gathered}
$$

Distributive Property
Ex. 6 Evaluate the expression

$$
3\left(\left[\begin{array}{cc}
-2 & 0 \\
4 & 1
\end{array}\right]+\left[\begin{array}{cc}
4 & -2 \\
3 & 7
\end{array}\right]\right)=3\left[\begin{array}{cc}
2 & -2 \\
7 & 8
\end{array}\right]
$$

Equality of Matrices

$$
\left[\begin{array}{cc}
6 & -6 \\
21 & 24
\end{array}\right]
$$

- Two Matrices are equal if they have the same order.
- Because two Matrices are equal only their corresponding entries are equal.

$$
\text { Ex.7 } \begin{aligned}
{\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] } & =\left[\begin{array}{rr}
2 & -1 \\
-3 & 0
\end{array}\right] \\
a_{11} & =2 \\
a_{12} & =-1 \\
a_{21} & =-3 \\
a_{22} & =0
\end{aligned}
$$

Solving Matrix Equations

$$
\text { Ex. } 8 \quad 3 X+A=B
$$

$$
A=\left[\begin{array}{cc}
1 & -2 \\
0 & 3
\end{array}\right] \quad B=\left[\begin{array}{cc}
-3 & 4 \\
2 & 1
\end{array}\right]
$$

$$
\begin{array}{r}
3 x+A=B \\
-A=-A \\
\frac{1}{3}(B x)=(B-A) \frac{1}{3} \\
x=\frac{1}{3}(B-A) \\
x=\frac{1}{3}\left(\left[\begin{array}{ll}
-3 & 4 \\
2 & 1
\end{array}\right]-\left[\begin{array}{ll}
-1 & +2 \\
0 & -3
\end{array}\right]\right) \\
=\frac{1}{3}\left[\begin{array}{cc}
-4 & 6 \\
2 & -2
\end{array}\right] \\
{\left[\begin{array}{cc}
\frac{-4}{3} & 2 \\
\frac{2}{3} & -\frac{2}{3}
\end{array}\right]}
\end{array}
$$

Matrix Multiplication

- If the dimensions of matrix A is $m \times n$ and the dimensions of B are $n X p$, then the product of $A X B$ will be $m \times p$.
- The definition of matrix multiplication indicates a row by column Multiplication.

Ex. 9 Find the product of $A B$

$$
\begin{aligned}
& A=\underbrace{\left[\begin{array}{cc}
-1 & 3 \\
4 & -2 \\
5 & 0
\end{array}\right]}_{3 \times 2} \quad B=\left[\begin{array}{ll}
-3 & 2 \\
-4 & 1
\end{array}\right] \\
& \begin{array}{c}
3 \times 2 \\
\left.\begin{array}{ll}
-1(-3)+3(-4) & -1(2)+3(1) \\
4(-3)-2(-4) & 4(2)-2(1) \\
5(-3)+0(-4) & 5(2)+0(1)
\end{array}\right] \\
{\left[\begin{array}{cc}
-9 & 1 \\
-4 & 6 \\
-15 & 10
\end{array}\right]}
\end{array}
\end{aligned}
$$

Ex. $\left.12 \begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right]$ $\begin{array}{cc}{\left[\begin{array}{cc}-2 & 4 \\ 1 & 0 \\ -1 & 1\end{array}\right]} \\ 2 \times 2 & 3 \times 2\end{array}$
undefined

Inverses of 2×2 Matrices

- Identity matrix-consist of ones on the main diagonal and zeros elsewhere.
- The identity matrix must be square I

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Determinants- every square matrix can be associated with one real number.
- A matrix has an inverse if the determinate is not equal to zero.
- To find the determinate of a 2×2 matrix, find the difference of the products of the two diagonals.

$$
\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-c b
$$

Ex. 1 Find the determinate of matrix A.

$$
A=\left[\begin{array}{cc}
2 & -3 \\
1 & 2
\end{array}\right]=2(2)-1(-3)=7
$$

Finding inverses of 2×2 matrices

- If a matrix has an inverse, it's called invertable.
- $A A^{-1}=I=A^{-1} A$

$$
A=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| \quad A^{-1}=\frac{1}{a d-c b}\left|\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right|
$$

Ex. 2 Find the inverse for matrix A and B.

$$
A=\left|\begin{array}{cc}
3 & -1 \\
-2 & 2
\end{array}\right| \quad B=\left|\begin{array}{cc}
3 & -1 \\
-6 & 2
\end{array}\right|
$$

$$
\begin{gathered}
\operatorname{det}(A)=3(2)-(-2)(-1) \\
=4 \\
A^{-1}=\frac{1}{4}\left|\begin{array}{ll}
2 & 1 \\
2 & \frac{3}{1}
\end{array}\right| \\
A^{-1}=\left|\begin{array}{ll}
\frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & \frac{3}{4}
\end{array}\right|
\end{gathered}
$$

$$
\operatorname{det}(B)=6-6
$$

$$
=0
$$

not invertible

Ex. 3 Finding the determinate of a 3×3 matrix

$$
\left.\begin{array}{rl}
A & =\left[\left.\begin{array}{ccc}
0 & 2 & \left(\begin{array}{c}
0 \\
3
\end{array}\right. \\
4 & 0
\end{array} \right\rvert\,\right. \\
2
\end{array}\right] .
$$

$$
\begin{aligned}
\operatorname{detvil} & =-\angle(-b)+ \\
& =10+4 \\
\operatorname{det}(A) & =14
\end{aligned}
$$

Solving Systems of Linear equations

- Systems of equations have exactly one solution, infinitely many solutions, or no solution.
- If A is an invertible matrix, the stream of Linear equations represented by $A X=B$ has a unique solution. $X=A^{-1} B$

Ex. 1 Solve the system of equations using an inverse.

$$
\begin{aligned}
&\left\{\begin{array}{c}
-3 x-4 y=-5 \\
4 x+3 y=9
\end{array}\right. \\
& {\left[\begin{array}{cc}
-3 & -4 \\
4 & 3
\end{array}\right]\left[\begin{array}{c}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-5 \\
9
\end{array}\right] } \\
& \operatorname{det}(A)=-3(3)-(-4)(4) \\
&=-9+16 \\
&= 7
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\frac{3}{7} & \frac{4}{7} \\
-\frac{4}{7} & -\frac{3}{7}
\end{array}\right]\left[\begin{array}{c}
-5 \\
9
\end{array}\right)} \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
\left.\frac{3}{7}\right)(-5)+\left(\frac{4}{7}\right)(9) \\
-\frac{4}{7}(-5)+\left(-\frac{3}{7}\right)(9)
\end{array}\right.} \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1
\end{array}\right] \begin{array}{c}
x=3 \\
y=-1
\end{array}}
\end{aligned}
$$

Ex. 2

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 x+3 y+z=-1 \\
3 x+3 y+z=1 \\
2 x+4 y+z=-2
\end{array}\right. \\
& {\left[\begin{array}{lll}
2 & 3 & 1 \\
3 & 3 & 1 \\
2 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
-2
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
2 & 3 & 1 \\
3 & 3 & 1 \\
2 & 4 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
-1 \\
1 \\
-2
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
-2
\end{array}\right]}
\end{aligned}
$$

Area of a Triangle

- We can use the determinate to find the area of a triangle.
- Form a 3×3 determinate where the first column are the x 's for all the points, the second column are the y's for all the points, and the last column is all ones.

$$
\text { Area Triangle }= \pm \frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

Ex. 1 Find the area of a triangle with vertices $(0,0),(0,6)$, and $(2,0)$.

$$
A= \pm \frac{1}{2}\left|\begin{array}{lll}
0 & 0 & 1 \\
0 & 6 & 1 \\
2 & 0 & 1
\end{array}\right|
$$

Transformations Using Matrices

- Polygons can be represented in matrix form by placing all of the vertices in one matrix. The x's are placed in row one and the y's in row 2.

Ex. 1 Write a matrix for a square that has the following coordinates (1,1), (-1,1), (-1,-1), and (1,-1).

$$
\left[\begin{array}{rrrr}
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1
\end{array}\right]
$$

Translations

- If we want to translate the figure left 3 and up 2, we add 3 to each x and 2 to each y.

$$
\left[\begin{array}{llll}
x_{1}+3 & x_{2}+3 & x_{3}+3 & x_{4}+3 \\
y_{1}+2 & y_{2}+2 & y_{3}+2 & y_{4}+2
\end{array}\right]
$$

Dilations

- To dilate a figure, multiply each x and y coordinate by a scale factor.

$$
3\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4}
\end{array}\right]
$$

Reflections

- To reflect an image, multiply the vertex matrix by the reflection matrix.
- Reflection across the x-axis

$$
\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

- Reflection across the y axis.

$$
\left[\begin{array}{ll}
-1 & 0 \\
0 & 1
\end{array}\right.
$$

- Reflection across $\mathrm{y}=\mathrm{x}$.

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Ex. 2 Reflect the segment across the x axis

$$
\begin{aligned}
& A= {\left[\begin{array}{cc}
-1 & 3 \\
2 & -2
\end{array}\right] } \\
& {\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 3 \\
2 & -2
\end{array}\right] } \\
& {\left[\begin{array}{cc}
-1 & 3 \\
-2 & 2
\end{array}\right] }
\end{aligned}
$$

Rotations

- To rotate a figure, multiply by the rotation matrix.
- Counter clockwise 90

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

- Counter clockwise 180

$$
\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

- Counter clockwise 270

$$
\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

