Right Triangle Trig

- Trigonometry- the study of triangles
- Pythagorean Theorem, only works on right triangles. $\quad a^{2}+b^{2}=c^{2}$

Trig Ratios

- Adjacent side- the leg next to an acute angle in a right triangle that is not the hypotenuse.
- Opposite side- the side across from an angle in a triangle.
- Hypotenuse- the side opposite the 90 degree angle in a right triangle.
SOH-CAH-TOA

Sine- opposite side $\frac{\text { hypotenuse }}{\text { hy }}$

$$
\sin \theta=\frac{0 \rho f}{n y p}
$$

Cosine- adjacent side hypotenuse

$$
\cos \theta=\frac{a d j}{h y p}
$$

Tangent- opposite side

$$
\tan \theta=\frac{\text { opf }}{a d j}
$$

Reciprocal Trig Ratios
Cosecant - hypotenuse opposite side

$$
\csc \theta=\frac{h x p}{0 \rho p}
$$

Secant - hypotenuse

$$
\sec \theta=\frac{h y p}{a d j}
$$

Cotangent- adjacent side opposite side

$$
\cot \theta=\frac{a d j}{o p p}
$$

Ex. 1 Find all the trig ratios for angle A.

$$
\begin{aligned}
a^{2}+b^{2}=c^{2} & \sin A=\frac{4}{5} \\
a^{2}+3^{2}=5^{2} & \cos A=\frac{3}{5} \\
a^{2}+9=25 & \tan A=\frac{4}{3} \\
\sqrt{4}=-9 & \tan A=\frac{5}{4} \\
\sqrt{a^{2}}=\sqrt{16} & \csc A \\
a=4 & \sec A=\frac{5}{3} \\
& \cot A=\frac{3}{4}
\end{aligned}
$$

Solving for missing sides

- Choose the trig ratio that matches the given information, then solve for the missing side.

Ex. 2 solve for x.

$$
\begin{gathered}
6(\cos 73)=\left(\frac{x}{6}\right)^{6} \\
x=1.75
\end{gathered}
$$

$$
\begin{aligned}
& x\left(\sin 51^{\circ}\right)=\left(\frac{14}{x}\right) \times \\
& \frac{x \cdot \sin 51}{\sin 51}=\frac{14}{\sin 51} \\
& x=\frac{14}{\sin 51} \\
& x=18
\end{aligned}
$$

Solving for the missing angle

- Choose the trig ratio that matches the given information, then solve for the missing angle by using arcsin, arccos, or arctan.

Ex. 4 solve for the angles.

Ex. 5 Solve for angle B.

$$
\begin{aligned}
& \tan B=\frac{20}{21} \\
& B=\tan ^{-1}\left(\frac{20}{21}\right) \\
& B=44 .)
\end{aligned}
$$

Trig Application

Ex. 5 At a point 42.3 feet from the base of a building, the angle of elevation of the top is 75 degrees. How tall is the building?

Law of Cosines

- If you are given three sides (SSS) or two sides and their included angle (SAS), Law of Cosines can be used.

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cdot \cos C
\end{aligned}
$$

Ex. 1 (SSS) Find the three angles of the triangle.

$$
a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A
$$

$$
\begin{aligned}
& a^{2}=b+c+14^{2}-2(19)(14) \cdot \cos A \\
& \delta^{2}=19^{2}+\operatorname{Al} A^{2}
\end{aligned}
$$

$$
64=55 \gamma-532 \cos A
$$

$-557-557$

$$
\begin{aligned}
\frac{-493}{-532} & =\frac{-532 \cos A}{-532} \\
.93 & =\cos A \\
\cos ^{-1}(.93) & =A \\
A & =22^{\circ}
\end{aligned}
$$

Ex. 2 (SAS) Find the remaining two angles and the side of the triangle.

$$
\begin{array}{r}
C \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
a^{2}=15^{2}+10^{2}-2(15)(10) \cos 115^{\circ} \\
\sqrt{a^{2}}=\sqrt{+51.79} \\
a=\sqrt{a n 5} \\
a=a=21.3
\end{array}
$$

Heron's Area Formula

- The Law of Cosines can be used to establish the following formula.

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

where $s=(a+b+c) / 2$

Ex. 3 Find the area of the triangle.

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

where $s=(a+b+c) / 2 \quad s=4.5$

$$
\begin{gathered}
S=(a+b+c) / 2 \\
A=\sqrt{4.5(4.5-3)(4.5-2)(4.5-4)} \\
A=2.9)
\end{gathered}
$$

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos (A) \\
& -b^{2}-c^{2}-b^{2}-c^{2} \\
& \frac{a^{2}-b^{2}-c^{2}}{-2 b c}=\frac{-2 b c \cdot \cos A}{-2 b c} \\
& \frac{a^{2}-b^{2}-c^{2}}{-2 b c}=\cos A \\
& A=\cos ^{-1}\left(\frac{a^{2}-b^{2}-c^{2}}{-2 b c}\right)
\end{aligned}
$$

Law of Sines

- Oblique triangle- triangles that have no right angles
- If you are given two angles and any sides (AAS or ASA), or two sides and an angle opposite one of them (SSA), you can use The Law of Sines.

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
\end{aligned}
$$

Ex. 1 AAS Find the remaining angles and sides.

$$
\begin{array}{r}
\sin 102.3\left(\frac{27.4}{\sin 28.7}\right)=\left(\frac{c}{\sin 102.3)}\right) \sin 4 \theta 2.3 \\
c=\frac{\sin 102.3(27.4)}{\sin 28.7} \quad \frac{\sin 28.7}{27.4}=\frac{\sin 49}{a} \\
c=55.7 \\
\sin 49\left(\frac{27.4}{\sin 28.7}\right)=\left(\frac{a}{\sin 49}\right) \sin 49 \\
a=431
\end{array}
$$

Ex. 2 ASA Find the remaining angles and sides.

$$
\begin{array}{ll}
\frac{22}{\sin 39}=\frac{b}{\sin 98} & \frac{22}{\sin 39}=\frac{a}{\sin 43} \\
b=35 & a=24
\end{array}
$$

The Ambiguous Case (SSA)

- If two sides and one opposite angle are given, three possible situations can occur: no Triangle exists, one triangle exist, or two triangles exist.

Ex. 1 Determine the number of possible solutions for the triangle. $A=30, a=8, b=10$.

$$
\begin{array}{ll}
h=b \sin A & \delta>5 \\
h=10(\sin 30) & \\
h=5 &
\end{array}
$$

one

Ex. 2 Determine the number of possible solutions for the triangle. $b=8, c=10, B=118$.

Zero D's

Ex. 3 Find all the solutions for the triangle. $a=4, b=3, A=112$.

B

$$
180-44-112=24
$$

$$
\begin{aligned}
& \frac{\sin A}{a}=\frac{\sin B}{b} \quad 3\left(\frac{\sin 112}{4}\right)=\left(\frac{\sin B}{3}\right)^{2} \\
& \sin ^{24}\left(\frac{c}{\sin 24}\right)=\left(\frac{4}{\sin 112)^{2}} \frac{\sin 24}{c=1.8} \quad \sin ^{-1} \quad 7=(\sin B) \sin ^{-1}\right. \\
& B=\sin ^{-1}(.7)
\end{aligned}
$$

Ex. 4 Find all the solutions for the triangle.
$A=51, a=40, c=50$.

$180-76.3=103.7$
$103.7151=154.7$

$$
\frac{b}{\sin (25.3)}=\frac{40}{\sin 5 i}
$$

$b=22$

Proving the Law of Sines

$$
\begin{array}{rlrl}
c(\sin B)=\left(\frac{h}{L}\right) & b \sin C=\left(\frac{h}{b} b\right. & \sin B=\frac{h}{a} \quad & h=a \sin B \quad \\
h=c(\sin B) & h=b \sin C & \frac{\alpha \sin B}{a b}=\frac{b \sin A}{a b} \\
\frac{l \sin B}{b / L}=\frac{b \sin C}{a C} & \frac{\sin B}{b}=\frac{\sin A}{a}
\end{array}
$$

$$
\begin{aligned}
& \text { Transitive Property } \\
& \frac{\sin B}{b}=\frac{\sin A}{a}=\frac{\sin C}{c}
\end{aligned}
$$

Ambiguous Case

- Occurs when you are given two consecutive sides and an angle. (SSA)
- 3 cases: no triangles, one triangle, two triangles.

No triangles.

- When the given angle is obtuse the side opposite that angle must be the largest side.
- When the given angle is acute, the side opposite that angle must be greater than or equal to the altitude.
- Domain error in the calculator

1. $a=19, b=17, B=93^{\circ}$

One triangle.

- When the given angle is obtuse and the side opposite that angle is the longest side.
- When the given angle is acute and the side opposite that angle is equal to the length of the altitude. (right triangle)
- When the side opposite of the acute angle is longer than the altitude.

Two Triangles

- When the given angle is acute the side opposite that angle is less than the other given side.

6. $C=71^{\circ}, c=24, a=25$
$A=80^{\circ}$ $B=29^{\circ}$ $b=12.3$

