Trigonometric Identities

- A statement of equality between two expressions are defined is called an identity.

Reciprocal Identities

$$
\begin{array}{lll}
\sin \theta=\frac{1}{\csc \theta} & \cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{1}{\cot \theta} \\
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta}
\end{array}
$$

Quotient Identities

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Pythagorean Identities

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \tan ^{2} \theta+1=\sec ^{2} \theta \\
& 1+\cot ^{2} \theta=\csc ^{2} \theta
\end{aligned}
$$

\&Try putting everything in terms of sine and cosine first

Ex. 1 Prove that $\sin (x) \csc (x)=1$

$$
\begin{gathered}
\frac{\sin x}{1} \cdot\left(\frac{1}{\sin x}\right)=1 \\
\frac{\sin x}{\sin x}=1 \\
1=1
\end{gathered}
$$

$$
\begin{aligned}
& \text { Ex. } 2 \text { simplify } \sin (x)+\sin (x) \cot ^{2}(x) \\
& \qquad \begin{array}{c}
\sin x\left(1+\cot ^{2} x\right) \\
\sin x\left(\csc ^{2} x\right) \\
\frac{\sin x}{1}\left(\frac{1}{\sin ^{2} x}\right) \\
\frac{\sin x}{\sin ^{2} x} \\
\frac{1}{\sin x}=\csc x
\end{array}
\end{aligned}
$$

Ex. 3 verify that $\sec ^{2}(x)-\tan (x) \cot (x)=\tan 2(x)$

$$
\begin{aligned}
\sec ^{2} x-\frac{\sin x}{\cos x} \frac{\cos x}{\sin x} & =\tan ^{2} x \\
\sec ^{2} x-1 & =\tan ^{2} x \\
\tan ^{2} x & =\tan ^{2} x
\end{aligned}
$$

Ex. 4 verify that...

$$
\begin{gathered}
\frac{7 \sin \theta+5 \cos \theta}{\sin \theta \cos \theta}=7 \sec \theta+5 \csc \theta \\
\frac{7 \sin \theta}{\sin \theta \cos \theta}+\frac{5 \cos \theta}{\sin \theta \cos \theta}=7 \sec \theta+5 \csc \theta \\
\frac{7}{\cos \theta}+\frac{5}{\sin \theta}=7 \sec \theta+5 \csc \theta \\
7 \sec \theta+5 \csc \theta=7 \sec \theta+5 \csc \theta
\end{gathered}
$$

Sum and Difference Identities

$$
\begin{aligned}
& \sin (a \pm \beta)=\sin a \cos \beta \pm \cos a \sin \beta \\
& \cos (a \pm \beta)=\cos a \cos \beta \mp \sin a \sin \beta \\
& \tan (a \pm \beta)=\frac{\tan a+\tan \beta}{1 \mp \tan a \tan \beta}
\end{aligned}
$$

Ex. 1 Use the sum and difference Identities to find the exact value:

$$
\text { a) } \begin{aligned}
\sin (15)= & \sin (45-30) \\
& \sin 45 \cdot \cos 30-\cos 45 \cdot \sin 30 \\
& \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2} \cdot \frac{1}{2} \\
& \frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}=\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
\cos \left(\frac{\pi}{12}\right) & =\cos \left(\frac{\pi}{4}-\frac{\pi}{6}\right) \\
& =\cos \frac{\pi}{4} \cdot \cos \frac{\pi}{6}+\sin \frac{\pi}{4} \sin \frac{\pi}{6} \\
& =\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2} \\
& =\frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4} \\
& =\frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
\tan (15) & =\tan (45-30) \\
& =\frac{\tan 45-\tan 30}{1+\tan 45 \cdot \tan 30}< \\
& =\frac{1-\frac{\sqrt{3}}{3}}{1+1 \cdot \frac{\sqrt{3}}{3}} \\
& =-\sqrt{3}+2
\end{aligned} \begin{aligned}
& \frac{1}{2} \div \frac{\sqrt{3}}{2} \\
& \frac{1}{2} \frac{2}{\sqrt{3}} \\
& \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\
& \frac{\sqrt{3}}{3}
\end{aligned}
$$

Ex. 2 Rewrite the expression using sin, cos, or tan: $\sin (340) \cos (50)-\cos (340) \sin (50)$

$$
\frac{\sin (340+50)}{\sin (390)}
$$

Ex. 3 Find the exact value of the trig function given:

$$
\begin{aligned}
& \text { Find } \cos (u+v) \quad \sin u=\frac{5}{3} \quad 0<u<\frac{\pi}{2} \\
& \cos v=\frac{3}{5} \quad \frac{3 \pi}{2}<v<2 \pi \\
& \cos (a+\beta)= \cos a \cos \beta-\sin a \sin \beta \\
& \cos u \cdot \cos v-\sin u \cdot \sin v \\
&\left(\frac{4}{5}\right) \cdot\left(\frac{3}{5}\right)-\left(\frac{3}{5}\right)\left(\frac{4}{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 3^{2}+b^{2}=5^{2} \\
& b=4 \\
& \sin (a \pm \beta)=\sin a \cos \beta \pm \cos a \sin \beta
\end{aligned}
$$

Ex. 4 verify

$$
\begin{gathered}
\sin \left(x+\frac{\pi}{3}\right)+\sin \left(x-\frac{\pi}{3}\right)=\sin x \\
\sin x \cdot \cos \frac{\pi}{3}+\cos x \sin \frac{\pi}{3}+\sin x \cdot \cos \frac{\pi}{3}-\cos x \sin \frac{\pi}{3} \\
\sin x\left(\frac{1}{2}\right)+\cos x\left(\frac{\sqrt{3}}{2}\right)+\sin x\left(\frac{1}{2}\right)-\cos x\left(\frac{\sqrt{3}}{2}\right) \\
\frac{1}{2} \sin x+\frac{\sqrt{3}}{2} \cos x+\frac{1}{2} \sin x-\frac{\sqrt{3}}{2} \cos x=\sin x \\
\sin x=\sin x
\end{gathered}
$$

Double Angle and Half Angle Identities

- It is useful to have Identities to find the value of a function of twice and Angle or half an angle.

$$
\begin{aligned}
& \sin 2 \theta=2 \sin \theta \cos \theta \\
& \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \\
& \cos 2 \theta=2 \cos ^{2} \theta-1
\end{aligned} \quad \sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}} \begin{array}{ll}
\cos 2 \theta=1-2 \sin ^{2} \theta & \cos \frac{\theta}{2}= \pm \sqrt{\frac{1+\cos \theta}{2}} \\
\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta} & \tan \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}
\end{array}
$$

Ex. 1 Find the exact value of $\sin (2 u)$ and $\tan (2 u)$.

$$
\begin{array}{cc}
\sin u=\frac{3}{5} & 0<u<\frac{\pi}{2} \\
\sin 2 \theta=2 \sin \theta \cos \theta & \\
\sin 2 u=\frac{2}{1}\left(\frac{3}{5}\right)\left(\frac{4}{5}\right) & \frac{24}{25} \\
\sin 2 u=\frac{24}{4}
\end{array}
$$

$$
\begin{aligned}
& \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta} \\
& \tan 2 u=\frac{2\left(\frac{3}{4}\right)}{1-\left(\frac{3}{4}\right)^{2}}=\frac{\frac{6}{4}}{1-\frac{9}{16}}=\frac{\frac{6}{4}}{\frac{7}{16}}=\frac{24}{7}
\end{aligned}
$$

Ex. 2 Find the value of $\sin \left(\frac{a}{2}\right)$

$$
\cos a=\frac{12}{13} \text { where } 0<a<90^{\circ}
$$

$$
\begin{aligned}
\sin \frac{\theta}{2} & = \pm \sqrt{\frac{1-\cos \theta}{2}} \\
\begin{aligned}
\sin \frac{a}{2} & = \pm \sqrt{\frac{1-\left(\frac{2}{3}\right)}{2}}
\end{aligned} & \begin{array}{l}
12 \\
\sqrt{\frac{1}{13} \div \frac{2}{1}} \\
a^{2}+b^{2}=c^{2} \\
12^{2}+b^{2}=13^{2} \\
b^{2}=13^{2}-12^{2} \\
\sqrt{\frac{1}{13} \cdot \frac{1}{2}}
\end{array} \\
& \pm \sqrt{\frac{1}{26}}=\sqrt{25}
\end{aligned}
$$

Inverse Trig Functions Notes

Find each value.

1. $\arcsin \left(-\frac{\sqrt{2}}{2}\right)$ that angle whose \sin is $-\frac{\sqrt{2}}{2}$
2. $\sin ^{-1} 0$
3. $\tan ^{-1} \frac{\sqrt{3}}{3}$
4. $\sin ^{-1} 2$
5. $\sin ^{-1}\left(\cos \left(\frac{\pi}{2}\right)\right)$
6. $\cos \left(\tan ^{-1} \sqrt{3}\right)$
7. $\cot ^{-1}(2)$

Solving Trigonometric Equations

- Most trig equations have more than one solution. The periodic nature will result in an infinite number of solutions.
- Many trig expressions will have two values for one period.

Solve each equation for $0 \leq x<2 \pi$
Ex. 1 solve $2 \sin (x)+1=0$

$$
\begin{aligned}
& \frac{2 \sin (x)}{8}=\frac{-1}{2} \\
& \sin (x)=-\frac{1}{2} \quad \begin{array}{l}
x=210^{\circ} \\
x=330^{\circ}
\end{array}
\end{aligned}
$$

Ex. 2 solve $\sin (x) \cos (x)-\frac{1}{2} \cos (x)=0$

$$
\begin{aligned}
& \cos x\left(\sin x-\frac{1}{2}\right)=0 \\
& \cos x=0 \quad \begin{array}{r}
\sin x-\frac{1}{2}=0 \\
x=\frac{\pi}{2}, \frac{1}{2}+\frac{1}{2} \\
\sin x=\frac{1}{2} \\
x-\frac{5 \pi}{6} x=\frac{\pi}{6}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
E x .3 \sin (2 x)-1 /=0 \\
+1
\end{array} \\
& s: n(2 x)=1 \\
& \frac{3 x}{2}=\frac{\frac{\pi}{2}}{2} \\
& x=\frac{\pi}{4} \\
& \text { Ex. } 4 \sin (x)+\cos (x)=0 \\
& x=\frac{3 \pi}{4} \quad x=\frac{7 \pi}{4} \\
& \operatorname{Ex.5\sqrt {2}\operatorname {cos}(x)+y=0} \begin{array}{r}
-1
\end{array} \\
& \frac{\sqrt{2} \cos (x)}{\sqrt{2}}=\frac{-1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{-\sqrt{2}}{2} \\
& \cos (x)=\frac{-\sqrt{2}}{2} \quad\left[\begin{array}{l}
x=\frac{3 \pi}{4} \\
x=\frac{5 \pi}{4}
\end{array}\right. \\
& \text { Ex. } 6 \sin (x) \tan (x)-\sin (x)=0 \\
& \sin x(\tan x-1)=0 \\
& \begin{array}{cc}
\sin x=0 & \tan x-y=0 \\
+1 \quad+1 \\
x=0 \quad x=\pi \quad & \tan x=1 \quad x=\frac{\pi}{1} \quad 1
\end{array}
\end{aligned}
$$

Ex. $7 \cos ^{2}(x)=\cos (x)$

$$
\begin{gathered}
7 \\
x=\frac{5 \pi}{4} \\
\hline
\end{gathered}
$$

$$
\begin{aligned}
& -\cos x-\cos x \\
& \cos ^{2} x-\cos x=0 \\
& \cos x(\cos x-1)=0 \\
& \cos x=0 \quad \cos x-x=0 \\
& x=\frac{\pi}{2} \quad x=\frac{3 \pi}{2} \quad \cos x=1 \quad x=0
\end{aligned}
$$

Ex. $8 \sec ^{2}(x)-2=0$

$$
\begin{gathered}
\sqrt{\sec ^{2} x}=\frac{\sqrt{2}}{\sec x=\frac{\sqrt{2}}{1}} \begin{array}{c}
\cos x=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{ \pm \sqrt{2}}{2} \\
\text { Ex. } 9 \cos (x) \tan (x)=\frac{1}{2} \\
\frac{\operatorname{css} x}{1} \cdot \frac{\sin x}{\cos x}=\frac{1}{2} \\
\sin x=\frac{1}{2} \\
x=\frac{\pi}{6} \quad x=\frac{5 \pi}{6}
\end{array}
\end{gathered}
$$

$$
x=\frac{\pi}{4}
$$

$$
x=\frac{7 \pi}{4}
$$

$$
x=\frac{5 \pi}{4}
$$

$$
x=\frac{3 \pi}{4}
$$

$$
\begin{aligned}
& E x .102 \cos ^{2}(x)-5 \cos (x)+2=0 \quad\left[0,360^{\circ}\right] \\
& 2 \cdot 2=\frac{4.4}{2 \cdot 2} 2 x^{2}-5 x+2=0 \\
& (2 \otimes)-1)(20-4)=0 \\
& (2 \cos x-1)(2 \cos x-4)=0 \\
& \begin{array}{r}
2 \cos x-y=0 \\
+1
\end{array} \\
& \frac{8 \cos x}{2}=\frac{1}{2} \\
& \begin{array}{rl}
2 \cos x & y \\
+4 & =0 \\
+4
\end{array} \\
& \frac{3 \cos x}{8}=\frac{4}{2} \\
& \cos x=2 \\
& \cos x=\frac{1}{2} \\
& x=60^{\circ} \\
& x=300
\end{aligned}
$$

Solving Trigonometric Equations with Caluculator

$$
\begin{aligned}
& \begin{array}{r}
\text { Ex. } 12 \cos (x)+\sqrt{3}=0 \\
-\sqrt{3}-\sqrt{3}
\end{array} \quad\left[0,360^{\circ}\right] \\
& \frac{8 \cos (x)}{2}=\frac{-\sqrt{3}}{2} \\
& \cos ^{-1} \cos x=\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right) \\
& x=150 \\
& \text { Ex. } 2 \sec (x+81)=2 \quad\left[0^{\circ}, 360^{\circ}\right] \\
& \frac{1}{\cos }(x+81)=\frac{2}{1} \\
& \cos (x+81)=\frac{1}{2} \\
& \cos ^{-1} \cos (x+81)=\cos ^{-1}\left(\frac{1}{2}\right) \\
& x+81=60 \quad x+81=300=60,300 \\
& -21219 \\
& +360 \\
& 339
\end{aligned}
$$

$$
\text { Ex. } 3 \frac{4 \cos ^{2}(x)}{4}=\frac{3}{4} \quad 90^{\circ}, 180^{\circ}
$$

$$
\begin{aligned}
\sqrt{\cos ^{2} x} & =\sqrt{\frac{3}{4}} \\
\cos x & =\frac{* \sqrt{3}}{2} \\
\cos ^{-1} \cos x & =\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right) \\
x & =150^{\circ},
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex. } 4 \tan (x) \sec (x)=\tan (x) \quad\left[0,360^{\circ}\right] \\
& -\tan x-\tan x \\
& \tan x \sec x-\tan x=0 \\
& (\tan x)(\sec x-1)=0 \\
& \tan x=0 \\
& \tan ^{-1} 0=x \\
& x=0,360^{\circ} \\
& \begin{array}{r}
\sec x-y=0 \\
+1+1
\end{array} \\
& \sec x=1 \\
& \frac{1}{\cos x}=\frac{1}{1} \\
& \cos x=1 \\
& \cos ^{-1}=x \\
& x=0,360^{\circ}
\end{aligned}
$$

$$
\begin{array}{lc}
\text { Ex. } 52 \cos ^{2}(x)-5 \cos (x)+2=0 & {\left[0 ; 360^{\circ}\right]} \\
2 x^{2}-5 x+2=0 & a x^{2}+b x+c=0 \\
\left.(2 x-1) \frac{(2 x}{2}-\frac{4}{2}\right)=0 & a \cdot c \\
(2 x-1)(x-2)=0 & -1 \cdot-4 \\
(2 \cos x-1)(\cos x-2)=0 & 2 \cdot 2 \\
2 \cos x-1=0 & \cos x-2=0 \\
\cos x=\frac{1}{2} \quad & \cos x=2 \\
x=60 \cdot 1 \text { II IV } \quad \text { No solation }
\end{array}
$$

