Trigonometric Identity Formulas

Pythagorean Identities

$$
\begin{gathered}
\sin ^{2} \theta+\cos ^{2} \theta=1 \\
1+\cot ^{2} \theta=\csc ^{2} \theta \\
\tan ^{2} \theta+1=\sec ^{2} \theta
\end{gathered}
$$

Reciprocal Identities

$$
\begin{array}{ll}
\sin \theta=\frac{1}{\csc \theta} & \csc \theta=\frac{1}{\sin \theta} \\
\cos \theta=\frac{1}{\sec \theta} & \sec \theta=\frac{1}{\cos \theta} \\
\tan \theta=\frac{1}{\cot \theta} & \cot \theta=\frac{1}{\tan \theta}
\end{array}
$$

Quotient Identities

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

$$
\cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Sum and Difference Identities

$$
\begin{gathered}
\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
\tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}
\end{gathered}
$$

Double and Half Angle Formulas

$$
\begin{gathered}
\sin 2 \theta=2 \sin \theta \cos \theta \\
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \\
\cos 2 \theta=2 \cos ^{2} \theta-1 \\
\cos 2 \theta=1-2 \sin ^{2} \theta \\
\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}
\end{gathered}
$$

$$
\begin{aligned}
& \sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}} \\
& \cos \frac{\theta}{2}= \pm \sqrt{\frac{1+\cos \theta}{2}} \\
& \tan \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}
\end{aligned}
$$

Trigonometric Ratios

$$
\begin{array}{ll}
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} & \csc \theta=\frac{\text { hypotenuse }}{\text { opposite }} \\
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} & \sec \theta=\frac{\text { hypotenuse }}{\text { adjacent }} \\
\tan \theta=\frac{\text { opposite }}{\text { adjacent }} & \cot \theta=\frac{\text { adjacent }}{\text { opposite }}
\end{array}
$$

Law of Cosines

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A \\
& A=\cos ^{-1}\left(\frac{a^{2}-b^{2}-c^{2}}{-2 b c}\right)
\end{aligned}
$$

Law of Sines

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Area of a scalene Triangle

$$
\begin{gathered}
A=\sqrt{s(s-a)(s-b)(s-c)} \\
\text { Where } s=\frac{a+b+c}{2}
\end{gathered}
$$

Degrees to Radians

$$
\text { degrees }=\text { radians } \frac{\pi}{180^{\circ}}
$$

Magnitude

$$
\text { magnitude }=\sqrt{x^{2}+y^{2}}
$$

Radians to Degrees

$$
\text { radians }=\text { degrees } \frac{180^{\circ}}{\pi}
$$

Direction

$$
\theta=\tan ^{-1} \frac{y}{x}
$$

\qquad

1. $\left[\begin{array}{c}-2 \\ 5\end{array}\right]+\left[\begin{array}{l}-4 \\ -5\end{array}\right]=$	2. $\left[\begin{array}{ll}2 & 1 \\ 0 & 4\end{array}\right] \cdot\left[\begin{array}{cc}1 & -2 \\ 2 & 4\end{array}\right]=$
3. Find $\left\|\begin{array}{cc}3 & 2 \\ -4 & 1\end{array}\right\|$	4. $\left[\begin{array}{ll}2 & 1 \\ 3 & 0\end{array}\right]^{-1}=$
5. Solve the system of equations using matrices. $\begin{gathered} x-3 y-2 z=0 \\ 2 x+3 y+2 z=3 \\ -x+y-z=6 \end{gathered}$	6. Find the value of the 6 trigonometric ratios for triangle $A B C$.
7. Find the value of x .	8. Find the value of θ.
9. Find the length of $\overline{\mathrm{AC}}$.	10. Find $\mathrm{m} \angle \mathrm{C}$.
11. Find $m \angle A$.	12. Find the area of quadrilateral $A B C D$.

25. Find the exact value of $\sin \theta$ if the terminal side of θ in standard position contains the point (4, -3).	26. Solve the equation for $0 \leq \theta<2 \pi$. Write your answer as a multiple of π. $\cos \theta=-\frac{1}{2}$
27. Solve for θ. $2 \sin \theta \cos \theta+\cos \theta=0$	28. Simplify the expression $\frac{\sin ^{2} \theta}{1-\cos \theta}$
29. Rewrite the identity. $\sin ^{2} x+\cos ^{2} x=1$	30. In which quadrants is the statement true, $\begin{aligned} & \sin \theta<0 ? \\ & \cos \theta<0 ? \\ & \tan \theta<0 ? \end{aligned}$
31. Find the exact value of $\cos \left(\frac{\pi}{4}\right)$	32. Find the exact value of $\sin \left(-\frac{\pi}{6}\right)$
33. Find the exact value of $\tan \left(\frac{\pi}{2}\right)$	34. Find the exact value of $\cot \left(\frac{\pi}{3}\right)$
35. Find the exact value of $\cos \left(\frac{-\pi}{6}\right)$.	36. Find the exact value of $\tan (4 \pi)$.
37. Find the exact value of $\sec \left(\frac{\pi}{4}\right)$.	38. Evaluate $\operatorname{Cos}^{-1}\left(\frac{1}{2}\right)$
39. Evaluate $\sin \left(\operatorname{Tan}^{-1}\left(\frac{\sqrt{3}}{3}\right)\right)$	40. Evaluate $\operatorname{Sin}^{-1}\left(-\frac{1}{2}\right)$

41. Evaluate cos $\left(\right.$ Sec $\left.^{-1}(2)\right)$	42. An airplane travels at 445 mph at a $N 25^{\circ} E$ and the wind blows at 40 mph at a bearing of N10 E. Find the magnitude of the true flight path of the plane.

