Name	· ·
NUTIN	- •

Algebra 1

Unit 3A Notes: **Quadratic Functions -**Factoring and Solving Quadratic Functions and Equations

DISCLAIMER: We will be using this note packet for Unit 3A. You will be responsible for bringing this packet to class EVERYDAY. If you lose it, you will have to print another one yourself. An electronic copy of this packet can be found on my class blog.

Standard	Lesson
Write expressions in equivalent forms to solve problems	
MGSE9–12.A.SSE.3	
Choose and produce an equivalent form of an expression to reveal and explain	
properties of the quantity represented by the expression.	
MGSE9–12.A.SSE.3a	
Factor any quadratic expression to reveal the zeros of the function defined by the	
expression.	
MGSE9–12.A.SSE.3b	
Complete the square in a quadratic expression to reveal the maximum and minimum	
value of the function defined by the expression.	
Interpret structure of expressions	
MGSE9-12.A.SSE.2	
Use the structure of an expression to rewrite it in different equivalent forms. For	
example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that	
can be factored as $(x^2 - y^2)(x^2 + y^2)$.	
Create equations that describe numbers or relationships	
MGSE9–12.A.CED.1	
Create equations and inequalities in one variable and use them to solve problems.	
Include equations arising from quadratic functions.	
MGSE9-12.A.CED.2	
Create quadratic equations in two or more variables to represent relationships	
between quantities; graph equations on coordinate axes with labels and scales. (The	
phrase "in two or more variables" refers to formulas like the compound interest	
formula, in which A = P(1 + r/n) ^{nt} has multiple variables.)	
MGSE9–12.A.CED.4	
Rearrange formulas to highlight a quantity of interest using the same reasoning as in	
solving equations. Example: Rearrange area of a circle formula $A = \pi r^2$ to highlight	
the radius r.	
Solve equations and inequalities in one variable	
MGSE9-12.A.REI.4	
Solve quadratic equations in one variable.	
MGSE9–12.A.REI.4a	
Use the method of completing the square to transform any quadratic equation in x	
into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive the	
quadratic formula from $ax^2 + bx + c = 0$.	
MGSE9–12.A.REI.4b	
Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots,	
factoring, completing the square, and the quadratic formula, as appropriate to the	
initial form of the equation (limit to real number solutions).	

Unit 3A: Factoring & Solving Quadratic Equations

After completion of this unit, you will be able to	Table of Contents			
Learning Target #1: Factoring	Lesson	Page		
 Factor the GCF out of a polynomial Factor a polynomial when a = 1 Factor a polynomial when a ≠ 1 	Day 1 - Factoring Quadratic Expressions – GCF			
 Factor special products (difference of two squares) 	Day 2 - Factoring Quadratic Trinomials, a = 1			
 Learning Target #2: Solving by Factoring Methods Solve a quadratic equation by factoring a GCF. Solve a quadratic equation by factoring when a is not 1. 	Day 3 - Factoring Quadratic8Trinomials, a ≠1			
 Create a quadratic equation given a graph or the zeros of a function. 	Day 4 - Factoring Special Products	10		
 Learning Target #3: Solving by Non Factoring Methods Solve a quadratic equation by finding square roots. Solve a quadratic equation by completing the square. 	Day 5 – Solving Quadratics (GCF, a = 1, a ≠ 1)			
 Solve a quadratic equation by using the Quadratic Formula. 	Day 6 – Solving By Taking Square Roots	16		
 Learning Target #4: Solving Quadratic Equations Solve a quadratic equation by analyzing the equation and determining the best method for solving 	Day 7 - Solving by Completing the Square	18		
 Solve quadratic applications 	Day 8 - Solving by Quadratic Formula	20		

Timeline for Unit 3A

Monday	Tuesday	Wednesday	Thursday	Friday
January 27 th	January 28 th	29 th	30 th	31 st
	Day 1- Factoring	Day 2 - Factoring	Day 3 - Factoring	Day 4 - Factoring
	Quadratic	Quadratic	Quadratic	Special Products
	Expressions – GCF	Trinomials, a = 1	Trinomials, a ≠1	<mark>Quiz – Factoring</mark>
				Quadratics
February 3rd	4 th	5 th	6 th	7 th
Day 5a – Solving	Day 5b – Solving	Day 6a – Solving	Day 6b – Solving	Day 7a -
Quadratics	Quadratics	By Taking Square	By Taking Square	Solving by
(GCF, a = 1, a ≠ 1)	(GCF, a = 1, a ≠ 1)	Roots	Roots	Completing the
				Square
10 th	11 th	12 th	13 th	1 4 th
Day 7b -	Day 8 -	Review Solving		
Solving by	Solving by	Quadratics	Unit 3A Test Review	<mark>Unit 3A Test</mark>
Completing the	Quadratic Formula	<mark>Quiz – Solving</mark>		
Square		Quadratics		

Expand

2v+6

2(y+3)

Day 1 – Factor by GCF

Standard(s):

MGSE9–12.A.SSE.3a Factor any quadratic expression to reveal the zeros of the function defined by the expression.

What is Factoring?

Factoring

- Finding out which two expressions you ______ together to get one single expression.
- "Splitting" an expression into a product of simpler expressions.
- The opposite of expanding or distributing.

Numbers have factors:

Expressions have factors too:

$$(x+3)(x+1) = x^2 + 4x + 3$$

Factor

Review: Finding the GCF of Two Numbers

Factor

Common Factors

• Factors that are shared by two or more numbers

Greatest Common Factor (GCF)

• To find the GCF create a factor t-chart for each number and find the largest common factor

Example: Find the GCF of 56 and 104

So, the GCF of 56 and 104 is 8.

Practice: Find the GCF of the following numbers. a. 30, 45 b. 12, 54

Finding the GCF of Two Expressions

To find the GCF of two expressions, create a factor chart for the two numbers AND expand the variables. Circle what is common to both.

Example: Find the GCF of 36x²y and 16xy

Practice: Find the GCF of the following pairs of expressions.

1) $15x^3$ and $9x^2$

2) 9a²b², 6ab³, and 12b

3) 8x² and 7y³

Factoring by GCF

	Steps for Factoring by GCF 1. Find the greatest common factor of all the terms.						
	2. The GCF of the terms goe parenthesis after the GCF.	s on	the outside of	the expression	and	what is lefte	over goes in
	3. After "factoring out" the C	GCF	, the only that	number that div	vides	into each t	erm should be 1.
Pra 1)	ctice: Factor each expression x ² + 5x GCF =	2)	x² – 8x G C	CF =	3)	28x - 63	GCF =
4)	18x ² – 6x GCF =	5)	-2m ² – 8m	GCF =	6)	-9a² - a	GCF =
7)	$6x^3 - 9x^2 + 12x$ GCF =	8)	$4x^3 + 6x^2 - 8x$	GCF =	9)	$1.5x^{3}v^{2} + 10x^{3}v^{2}$	<²∨4 GCF =

Day 2 – Factor Trinomials when a = 1

Standard(s):

MGSE9–12.A.SSE.3a Factor any quadratic expression to reveal the zeros of the function defined by the expression.

Factoring a trinomial means finding two ______ that when multiplied together produce the given trinomial.

Skill Preview: "Big X" Problems

Complete the diamond problems. The top cell contains the product of the numbers in the left and right cells, while the bottom cell contains the sum.

Factoring using Quadratic Trinomials when a = 1

c. Factor $x^2 - 36$

d. Factor $2x^2 + 16x + 24$

Remember: You must ALWAYS include the GCF on the outside of the factored form!

Day 3 – Factor Trinomials with a ≠1

In the previous lesson, we factored polynomials for which the coefficient of the squared term, "a" was always 1. Today we will focus on examples for which $a \neq 1$.

Looking for Patterns

What do you observe in the following Area Models?

Factoring is the
of
distributing or multiplying.

 $(x-3)(3x+4) = 3x^2 - 5x - 12$

(2x+1)	(4x+3)	$= 8x^{2} + 10x + 3$
		0

 STEP 1: ALWAYS check to see if you can factor out a GCF. 	Factor: $2x^2 - 5x + 3$
 STEP 2: Complete a "Big X" and T-chart Determine what two numbers can be multiplied to get your "a·c" term and added to get your "b" term. 	$a \cdot c$ Factors of $a \cdot c$ Sum = b
 STEP 3: Create a 2x2 Area Model and place your original "a" term in the top left box and "c" term in the bottom right box. Fill the remaining two boxes with the two numbers you found in "Big X" and place an x after them. 	
• Factor out a GCF from each row and column	
 STEP 5: Check your factors on the outside by multiplying them together to make sure you get all the expressions in your box. 	Factored Form:

Factoring a ≠ 1			
Using the Area Model. Factor the following trinomials. 1. $5x^2 + 14x - 3$	Factored Form:		
2. $2x^2 - 17x - 30$	Factored Form:		
3. 12x ² + 56x + 64	Factored Form:		
4. $6x^2 - 40x + 24$ Facto	ored Form:		

Remember: You must ALWAYS include the GCF on the outside of the factored form!

Notes

Day 4 – Factor Special Products

Standard(s): MGSE9-12.A.SSE.2 Use the structure of an expression to rewrite it in different equivalent forms. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.					
Review: Factor the follow a. $x^2 - 49$	ing expressions: I	b. x² − 25	c. x ² – 81		
1. What do you potice ab	out the "a" terr	n2			
2. What do you notice ab	out the "c" terr	n?			
3. What do you notice ab	out the "b" terr	n?			
4. What do you notice ab	out the factore	d form?			
The above polynomials a	re a special pat	tern type of polynomials; this patt ifference of Two Squares a² – b² = (a – b)(a + b) *Always subtraction* *Both terms are perfect squares* *Always two terms*	ern is called a ' ¶ I I I		
Can you apply the "Difference of Two Squares" to the following polynomials?					
a. 9x ² – 49	b. 9x ² – 100	c. 4x ² – 25	d. 16x ² – 1		
e. x ² + 25	f. 25x ² – 64	g. 36x ² – 81	h. 49x² – 9		

a. $x^2 + 8x + 16$ b. $x^2 - 2x + 1$ c. $x^2 - 10x + 25$

What do you notice about the "a" term? ______
 What do you notice about the "c" term? ______
 What do you notice about the "b" term? ______
 What do you notice about the factored form? ______

The above polynomials are a second type of pattern; this pattern type is called a

Perfect Square Trinomials $a^2 + 2ab + b^2 = (a + b)^2$ $a^2 - 2ab + b^2 = (a - b)^2$	Perfect Square Trinomial $a^2 + 2ab + b^2$		
	square of first term of binomial	twice the product of binomial's first and last terms	square of last term of binomial MathBits.com
	binom	_{ial} (a + b)²	

Using the perfect square trinomial pattern, see if you can fill in the blanks below:

a. x² + _____ + 36 b. x² - _____ + 81 c. x² - _____ + 64

d. x² + 4x + _____

e. x² – 6x + _____

f. x² + 20x + _____

Notes

Day 5 – Solving Quadratics (GCF, when a = 1, when a not 1)

•

In this unit, we are going to explore how to solve quadratic equations.

Create an equation to represent the following graphs:

The Main Characteristics of a Quadratic Function

Zero Product Property and Factored Form

Zero Product Property

- The <u>zero-product property</u> is used to ______ an equation when one side is zero and the other side is a product of binomial factors.
- The zero product property states that if $a \cdot b = 0$, then a = 0 or b = 0

Examples: Identify the zeros of the functions:

a.
$$(x-2)(x+4) = 0$$

b. $x(x+4) = 0$
c. $(x+3)^2 = 0$

d.
$$y = (x + 4)(x + 3)$$

e. $y = x(x - 9)$
f. $f(x) = 5(x - 4)(x + 8)$

Solve the following quadratic equations by factoring (GCF) and using the Zero Product Property.

1: Factoring & Solving Quadratic Equations - GCF

Practice: Solve the following equations by factoring out the GCF.

 $1.3x^2 = 18x$

2.
$$-3x^2 - 12x = 0$$

Form:	
	Form:

Factored Form: _____

Zeros: _____

Zeros: _____

Solve the following quadratic equations by factoring and using the Zero Product Property.

2: Facto	oring & Solving Quadratic Equations when a =1
3. $y = x^2 - 6x + 9$	4. $x^2 + 4x = 32$
Factored Form: Zeros:	Factored Form: Zeros:
3: Factor	ing & Solving Quadratic Equations when a not 1
5. $y = 5x^2 + 14x - 3$	Factored Form: Zeroes:
6. $2x^2 - 8x = 42$	Factored Form:
	Zeroes:

Graphic Organizer: Reviewing Methods for Factoring

Before you factor any expression, you must always check for and factor out a Greatest Common Factor (GCF)!

	Looks Like	How to Factor	Examples	
GCF (Two Terms)	ax ² - bx	Factor out what is common to both terms (mentally or list method)	$x^{2} + 5x = x(x + 5)$ $18x^{2} - 6x = 6x(3x - 1)$ $-9x^{2} - x = -x(9x + 1)$	
A = 1	x ² + bx + c	Think of what two numbers multiply to get the c term and add to get the b term (Think of the diamond). You also need to think about the signs: $x^{2} + bx + c = (x + \#)(x + \#)$ $x^{2} - bx + c = (x - \#)(x - \#)$ $x^{2} - bx - c/x^{2} + bx - c = (x + \#)(x - \#)$	$x^{2} + 8x + 7 = (x + 7)(x + 1)$ $x^{2} - 5x + 6 = (x - 2)(x - 3)$ $x^{2} - x - 56 = (x + 7)(x - 8)$	
A not 1	ax ² + bx + c	Area Model: $3x^2 - 5x - 12$ 3x + 4 $x 3x^2 + 4x$ -3 -9x - 12 Factored Form : $(x - 3) (3x + 4)$	$9x^{2} - 11x + 2 = (9x - 2) (x - 1)$ $2x^{2} + 15x + 7 = (2x + 1)(x + 7)$ $3x^{2} - 5x - 28 = (2x + 7)(x - 4)$	
Difference of Two Squares	x ² – c	Both your "a" and "c" terms should be perfect squares and since there is no "b" term, it has a value of 0. You must also be subtracting the a and c terms. Your binomials will be the exact same except for opposite signs. Difference of Squares $a^2 - b^2 = (a + b)(a - b)$	$x^{2} - 9 = (x + 3)(x - 3)$ $x^{2} - 100 = (x + 10)(x - 10)$ $4x^{2} - 25 = (2x + 5)(2x - 5)$	
Perfect Square Trinomials	x ² + bx + c "c" is a perfect square "b" is double the square root of c	Factor like you would for when a = 1	$x^{2}-6x+9 = (x-3)(x-3)$ $= (x-3)^{2}$ $x^{2}+16x+64 = (x+8)(x+8)$ $= (x+8)^{2}$	

Standard(s): MGSE9–12.A.REI.4b

Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, factoring, completing the square, and the quadratic formula, as appropriate to the initial form of the equation (limit to real number solutions).

Review: If possible, simplify the following radicals completely.a. $\sqrt{25}$ b. $\sqrt{125}$ c. $\sqrt{24}$

Explore: Solve the following equations for x:

a. $x^2 = 16$ b. $x^2 = 4$ c. $x^2 = 9$ d. $x^2 = 1$

Remember: When taking square roots to solve for x, you get a positive and negative answer!

St	eps for Solving Que	adratics by Finding Squ	uare Roots
1. Add or Subtract c	iny constants that are	on the same side of x².	
2. Multiply or Divide	any constants from x ²	terms. "Get x² by itself"	
3. Take square root	of both sides and set e	equal to positive and nega	tive roots (±).
	Ex: x ² :	= 25	
	$\sqrt{x^2}$	= √25	
	Х	= <u>+</u> 5	
	X =	= + 5 and x = - 5	
REMEMBER WHE	N SOLVING FOR X YO	DU GET A AN	ND ANSWER!
is the following for y:			
1) $x^2 = 49$	2) $x^2 = 20$	3) $x^2 = 0$	4) $3x^2 = 108$
,	,	,	,
5) $x^2 - 11 = 14$	6) 7 <i>x</i>	$x^2 - 6 = 57$	7) $4x^2 - 6 = 74$

Solving by Finding Square Roots (More Complicated)

Steps for Solving Quadratics by Finding Square Roots with Parentheses

1. Add or Subtract any constants outside of any parenthesis.

2. Multiply or Divide any constants around parenthesis/squared term. "Get ()² by itself"

3. Take square root of both sides and set your expression equal to BOTH the positive and negative root (±). Ex: $(x + 4)^2 = 25$

 $\sqrt{(x + 4)^2} = \sqrt{25}$ (x + 4) = ± 5 x + 4 = +5 and x + 4 = -5 x = 1 and x = -9

4. Add, subtract, multiply, or divide any remaining numbers to isolate x.

REMEMBER WHEN SOLVING FOR X YOU GET A POSITIVE AND NEGATIVE ANSWER!

Solve the following for x:

1) $(x-4)^2 = 81$

2) $(p-4)^2 = 16$

3) $10(x-7)^2 = 440$

4)
$$\frac{1}{2}(x+8)^2 = 14$$
 5) $-2(x+3)^2 - 16 = -48$ 6) $3(x-4)^2 + 7 = 67$

Day 7 – Solving by Completing the Square

Standard(s): MGSE9–12.A.REI.4b

Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, factoring,

completing the square, and the quadratic formula, as appropriate to the initial form of the

equation (limit to real number solutions).

Some trinomials form special patterns that can easily allow you to factor the quadratic equation. We will look at two special cases:

Review: Factor the following trinomials.

1. x ² - 6x + 9	2. x ² + 10x + 25	3. x ² - 16x + 64

(a) How does the constant term in the binomial relate to the b term in the trinomial?

(b) How does the constant term in the binomial relate to the c term in the trinomial?

Problems 1-3 are called **Perfect Square Trinomials**. These trinomials are called perfect square trinomials because when they are in their factored form, they are a binomial squared.

An example would be $x^2 + 12x + 36$. Its factored form is $(x + 6)^2$, which is a binomial squared.

But what if you were not given the c term of a trinomial? How could we find it?

Complete the square to form a perfect square trinomial and then factor.

a. $x^2 + 12x +$

b. $z^2 - 4z +$

Unit 3A: Factoring & Solving Quadratic Equations Solving equations by "COMPLETING THE SQUARE"

The Equation:

- **STEP 1:** Write the equation in the form $x^2 + bx + \Box = c + \Box$ (Bring the constant to the other side)
- **STEP 2:** Make the left-hand side a perfect square trinomial by adding $\left(\frac{b}{2}\right)^2$ to **both** sides
- **STEP 3:** Factor the left side, simplify the right side
- STEP 4: Solve by taking square roots on both sides

$$x+3 = \sqrt{7}$$
 and $x+3 = -\sqrt{7}$
 $x = \sqrt{7} - 3$ and $x = -\sqrt{7} - 3$

Group Practice: Solve for x by "Completing the Square".

1. $x^2 - 6x - 72 = 0$

2. $x^2 + 80 = 18x$

X = _____

3. $x^2 - 14x - 59 = -20$

X = _____

4. $2x^2 - 36x + 10 = 0$

Day 8 - Solving by Quadratic Formula

Standard(s): MGSE9–12.A.REI.4b Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, factoring, completing the square, and the quadratic formula, as appropriate to the initial form of the equation (limit to real number solutions).

Exploring the Nature of Roots

Determine the number of real solutions (roots/x-intercepts) for the following graphs:

1. $f(x) = x^2 - 4x + 3$

3. $f(x) = x^2 + x + 1$

The Discriminant

Given a quadratic function in standard form: $ax^2 + bx + c = 0$, where $a \neq 0$,

- The discriminant is found by using: b² 4ac
- The discriminant can be used to determine the real number of solutions for a quadratic equation.

Interpretation of the Discriminant $(b^2 - 4ac)$

- If b² 4ac is positive:
- If b² 4ac is zero:
- If b² 4ac is negative:

Practice: Find the discriminant for the previous three functions: a) $f(x) = x^2 - 4x + 3$ b) $f(x) = x^2 + 10x + 25$ c) $f(x) = x^2 + x + 1$

Discriminant:	Discriminant:	Discriminant:
#of real solutions:	#of real solutions:	#of real solutions:

We have learned *three methods* for solving quadratics:

- **Factoring** (Only works if the equation is factorable) •
- **Taking the Square Roots** (Only works when equations are not in Standard Form) .
- **Completing the Square** (Only works when a is 1 and b is even)

What method do you use when your equations are not factorable, but are in standard form, and a may not be 1 and b may not be even?

Practice with the Quadratic Formula

For the guadratic equations below, use the guadratic formula to find the solutions. Write your answer in simplest radical form.

1) $4x^2 - 13x + 3 = 0$ $a = ___ b = __ c = ___$ **2)** $9x^2 + 6x + 1 = 0$ $a = ___ b = __ c = ___$

Discriminant:

Discriminant:

Solutions: _____

Zeros: _____

Algebra 1	Unit 3A: Factoring & 3	Solving Quadratic Equations				Notes
3) $7x^2 + 8x + 3 = 0$	a = b = c =	4) $-3x^2 + 2x = -8$	a =	_ b =	c = _	

Discriminant: _____

X = _____

Discriminant: _____

Roots: _____

Determining the Best Method

Non-Factorable Methods				
Completing the Square	Finding Square Roots		Quadratic Formula	
$ax^2 + bx + c = 0,$	$ax^2 - c = 0$	-	$ax^2 + bx + c = 0$	
when a = 1 and b is an even #	Parenthesis in eq	uation	Any equation in standard form Large coefficients	
Examples	Examples		Ū.	
$x^2 - 6x + 11 = 0$	$2x^2 + 5 = 9$		Examples	
$x^2 - 2x - 20 = 0$	$5(x + 3)^2 - 5 = 20$		$3x^2 + 9x - 1 = 0$	
	$x^2 - 36 = 0$		$20x^2 + 36x - 17 = 0$	
	Factorable I	Methods		
A = 1 & A Not 1 (Factor into 2 Binomials)			GCF	
$ax^{2}+bx+c=0$, when $a=1$		$ax^2 + bx = 0$		
$ax^2 \pm bx \pm c = 0$, when $a > 1$				
$x^2 - c = 0$		Examples		
		$5x^2 + 20x = 0$		
Examples		$x^2 - 6x = 8x$		
$3x^2 - 20x - 7 = 0$				
$x^2 - 3x + 2 = 0$				
$x^2 + 5x = -6$				
$x^2 - 25 = 0$				