Properties of Parallelograms Notes

Quadrilateral

- Is a polygon with four sides.
- The sum of all its angles is 360 degrees.

Parallelogram

- Is a special type of quadrilateral with two pairs of opposite sides that are parallel.
- Opposite angles and sides are congruent.
- Consecutive angles are supplementary.
- The diagonals are bisected with each other

Find the missing values indicated by the variable.

1

Proving Parallelograms

- Show that both pairs of opposite sides are parallel.
- Show that both pairs of opposite sides are congruent.
- Show that both pairs of opposite angles are congruent.
- Show that the diagonals bisect each other.
- Show that a pair of opposite sides is both parallel and congruent.

Determine if the following quadrilaterals are parallelograms. If so, state the theorem you used.

7.

In quadrilateral *WXYZ*, $m \angle W = 42^\circ$, $m \angle X = 138^\circ$, $m \angle Y = 42^\circ$. Find $m \angle Z$. Is *WXYZ* a parallelogram? *Explain* your reasoning.

8. Prove that quadrilateral ABCD is a parallelogram.

Properties Trapezoids

- Trapezoids have exactly one pair of opposite parallel sides.
- An isosceles trapezoid has a pair of opposite parallel sides and two congruent legs.
- The **median** is one half the sum of the bases.
- "Consecutive" angles are supplementary.

Polygons

- A regular polygon is where all sides are congruent.
- The sum of the angle measures of all convex polygons is $(n 2)180^\circ$, where n is the number of sides.
- The sum of the exterior angle measures is 360°

Practice Coordinate Geometry: Determine if quadrilateral PQRS is a parallelogram.

Ex1: ABCD is a parallelogram. Given $m \angle ABD = 65^{\circ}$, $m \angle CBD = 45^{\circ}$, AE = 5, BC = 8. Find the measure of the following:

В

- AD = _____ EC = _____
- *m*∠ADC = _____
- *m*∠BCD = _____
- m∠BDA = _____

12.	$m \angle AEB$	13.	$m \angle BAE$
14.	$m \angle AED$	15.	$m \angle ECB$
16.	$m \angle BAD$	17.	$m \angle DCE$
18.	$m \angle ADC$	19.	m∠DCB

