\qquad
Vocabulary: Translations, Dilations, Reflections, Rotations, and Isometry.

1) Translate the following points by	2) Translation: $(x, y) \rightarrow(x-2, y-6)$	3) Reflection over $y=x$
the rule: $(x, y) \rightarrow(x+1, y-4)$	$\mathrm{W}(3,2) \quad \mathrm{C}(2,4) \quad \mathrm{T}(3,5) \quad \mathrm{Z}(5,2)$	
	$\square)^{+\prime \prime}$	$\square-$
$S(-5,2) \rightarrow$	- $-1-1$	$\square-\quad-$
$Y(-4,5) \rightarrow$		$\square \mathcal{I}^{u}$
$\mathrm{R}(-1,1) \rightarrow$	\rightarrow	C
A (-4, -2) \rightarrow		\square -
	\square	
4) Reflection over $\mathrm{y}=-3$	5) Rotate the figure $90^{\circ} \mathrm{CW}$	6) Rotate the figure $90^{\circ} \mathrm{CCW}$
		$\longrightarrow \longrightarrow \longrightarrow$
- -	,	D
		,
\xrightarrow{x}		\square
\square		
-		
\downarrow	$\square \quad-\quad \square$	
	8) Find the coordinates of the new	9) Draw a dilation with $\mathrm{k}=2$
vertices of the image that has been dilated by a factor of 5 .	vertices of the image that has been	 1^{y}
	-	
$\mathrm{S}(-5,2) \rightarrow$	$\mathrm{W}(3,2) \rightarrow$	${ }^{-2}$
$Y(-4,5) \rightarrow$	$\mathrm{C}(2,4) \rightarrow$	$\xrightarrow{\longrightarrow}$
$Y(-4,5) \rightarrow$	$C(2,4) \rightarrow$	$C \sim \sim B{ }^{-1}$
$\mathrm{R}(-1,1) \rightarrow$	T (3, 5) \rightarrow	
A (-4, -2) \rightarrow	$\mathrm{Z}(5,2) \rightarrow$	\square
		$\begin{array}{\|l\|l\|l\|l\|l} \hline & & & 1 & \\ \hline \end{array}$
10) Determine the scale factor, $\mathrm{k}=\ldots$	11) Given the points $M(-3,1) \quad S(5,-2)$	12) Given the points $\mathbf{K (0 , - 4)} \quad \mathbf{P (- 6 , - 3)} \quad \mathbf{R (1 , 2)}$
$\mathrm{P}_{0}{ }^{6} \mathrm{t}^{y}$	Translate: $(x-3, y+2)$ Reflect: $\mathrm{y}=\mathrm{x}$	Reflect: over the x-axis Rotate: 270 CCW
	lect. $y=x$	$\mathrm{K}^{\prime} \rightarrow$ Rotate 270
	M ${ }^{\prime}$	
	M ${ }^{\prime} \rightarrow$	$\mathrm{P}^{\prime} \rightarrow \quad \mathrm{P}$ ' \rightarrow
	$S^{\prime} \rightarrow$	
	$S^{\prime \prime} \rightarrow$	$\mathrm{R}^{\prime} \rightarrow \quad \mathrm{R}$ ' \rightarrow

How many lines of symmetry do the following figures have?

