\qquad
Vocabulary: Translations, Dilations, Reflections, Rotations, and Isometry.

5) $\Delta J K L$ is rotated 90 about the origin and then translated using $(x, y) \rightarrow(x-8, y+5)$. What are the coordiantes of the final image of L ?
A. $(-7,10)$
B. $(-7,0)$
C. $(-9,10)$
D. $(-9,0)$

Answers

6) Which figure has 90 rotational symmetry?
A. square
B. regular hexagon
C. regular pentagon
D. equilateral triangle
7) Point P is located at $(4,8)$ on a coordinate plane. Point P will be relfected over $y=x$. What will bee the coordiantes of the image of point P ?
7) \qquad
A. $(28,4)$
B. 24,8$)$
C. $(4,28)$
D. $(8,4)$
8) Point F^{\prime} is the image when point F is reflected over the line $x=-2$ and then over the line $y=3$. The
location of F^{\prime} is $(3,7)$. Which of the following is the location of point F ?
A. $(-7,-1)$
B. $(-7,7)$
C. $(1,5)$
D. $(1,7)$
9) A triangle has vertices at $\mathrm{A}(-3,-1), \mathrm{B}(-6,-5), \mathrm{C}(-1,-4)$. Which tranformation would produce an image with vertices $A^{\prime}(3,-1), B^{\prime}(6,-5), C^{\prime}(1,-4)$?
A. A relfection over the x-axis
B. A relfection over the y-axis
C. A rotation 99 clockwise
D. A rotation 90 counterclockwise
10) The vertices of $\Delta J K L$ have coordinates $\mathrm{J}(5,1), \mathrm{K}(-2,-3)$, and $\mathrm{L}(-4,1)$. Under which tranformation is the image $\Delta J^{\prime} K^{\prime} L^{\prime}$ NOT congrunet to $\Delta J K L$?
8) \qquad
9) \qquad
10) \qquad
A. A translation of two units to the right and two units down
B. A counterclockwise rotation of 180 degrees aound the origin
C. A reflection over the x-axis
D. A dilation with a scale factor of 2 centered at the origin

