1. List the sample space for the spinner. $\begin{bmatrix} 1, 2, 3, 4, 5, 6, 7, 8 \end{bmatrix}$	2. Find the intersection of A and B. A = {1,2,3,4,5,6,7,8,9} B = {3,6,9,12,15,18} £3, 6,93		3. Which is a subset of M? M = {0,1,2,3,4,5,6} A= {0,2,4,6} P = {1,3,5,7} R = {1,2,3,4,5,6, X						
4. Michael owns fifteen pairs of pants and 80 polos. How many different outfits can he choose from?	5. A fruit bowl contains <u>4 green</u> apples 7 red apples, and <u>3 yellow</u> apples. What is the probability that a randomly selected apple will be gree or yellow? $\frac{4+3}{14} = \frac{1}{14} = \frac{1}{2}$	i žu	6. like nu	San eliho mbe	nanti pod t er or 2	ha ro hat : a nu	olls a she umbo	a die rolls er lan 4	, what is the an odd ger than 2?
7. P(double) $\frac{\frac{6}{36} - \frac{1}{6}}{\frac{1}{6}}$			•	•	••	••	•••		
8. P(a sum less than 5) or P(even sum) $\frac{1}{36} + \frac{18}{32} - \frac{4}{32}$ 9. P(sum of 11) or P(sum less than 4) $\frac{2}{32} + \frac{3}{32}$ 10. P(double) or P(even sum) $\frac{11}{32} = \frac{1}{2}$ $\frac{11}{32} = \frac{1}{2}$	$\frac{\frac{2}{3c}}{\frac{5}{3c}} = \frac{5}{9}$		2 3 4 5 6 7	3 4 5 6 7 8	4 5 6 7 8 9	5 6 7 8 9 10	6 7 8 9 10 11	7 8 9 10 11 12	
11. P(double) or P(odd sum) $\frac{3}{3}$									

A math teacher at EPHS was interested to see how many students like each subject.

		Math	English	Social Studies]
	Male	35	15	50	00
	Female	40	20	30	9U
		75	35	80	190
12.	Find P(Social Studies)	$\frac{80}{190} = \frac{8}{19}$			
13.	Find P(Social Studies)'	$\frac{110}{190} = \frac{11}{19}$			
14.	Find P(Female Math)	$\frac{40}{15} = \frac{8}{15}$			
15.	Find P(Math Female)	$\frac{40}{90} = \frac{4}{9}$			
16.	Find P(Male \cap Social	Studies) $\frac{59}{190} = \frac{5}{17}$			
17.	Find P(Male ∪ Social	Studies) 130 13			
	$\frac{100}{190} + \frac{80}{190} - \frac{5}{19}$	<u>0</u> 0			

Questions 22-25. Decide if each set of events is independent or dependent.

22. P(A) = 0.5; P(B) = 0.3; $P(A \cap B) = 0.125$ <u>Peperdent</u>

23. $P(A) = \frac{1}{2}$; $P(B) = \frac{2}{5}$; $P(A \cap B) = \frac{1}{5}$ Independent

24. A boy chooses a marble from a bag, puts it back in the bag, then chooses a second marble.

25. A girl chooses a marble from a bag, does not put it back in the bag, then chooses a second marble. Dependent

Jsing the letters in DALLAS:
.6. Find the probability of picking an A and then another A with replacement. $\frac{36}{36} = \frac{7}{9}$
7. Find the probability of picking an A and then another A without replacement. $\frac{\overline{36}}{\overline{5}} = \overline{15}$
.8. Find the probability of picking a L and then a A with replacement. $\frac{32}{6} = \frac{9}{6}$
9. Find the probability of picking a L and then a A without replacement. $\frac{36}{5} = \frac{2}{15}$
a jar contains 7 red, 5 green, 2 blue, and 6 yellow marbles.
0. What is the probability of chosing a green and then a red marble with replacement. $\frac{35}{40} = \frac{1}{3}$
1. What is the probability of chosing a green and then a red marble without replacement. $\frac{5}{50} - \frac{1}{19}$
2. What is the probability of chosing a blue and then a red marble without replacement. $\frac{1}{100} = \frac{1}{100}$
3. What is the probability of chosing a blue and then anohter blue marble without replacement. $\frac{5}{20}$