\qquad

1. A vector v has initial point $R(-9,2)$ and terminal point S(-4, 6).
a) In component form
b) As a linear combination of i and j.
c) Find $\|\mathrm{V}\|$
d) Sketch vin standard position.

e) Find the Direction Angle of v.
2. Verify whether vectors r and s are equal. If not, explain why not.

$$
\overline{S T} \text { (with } \mathrm{S}(11,-29) \text { and } T(2,-23) \text {) and } \mathbf{r}=\langle-9,6\rangle
$$

3. Given vectors $u=\langle-5,2\rangle$ and $v=\langle-6,12\rangle$, find the following.
a) $2 v+4 u$
b) 5 v
c) $5(u-v)$
4. Find the component form of the vector w with $\|w\|=15$ in the same direction as $u=\langle 4,3\rangle$.
5. Find the direction angle of the vector.
a) $v=\langle-8,-4\rangle$
b) $w=12 i-10 j$

6. Convert to rectangular form. $\left(-8, \frac{-5 \pi}{4}\right)$	7. Find the magnitude for $\left(-2, \frac{4 \pi}{3}\right)$
8. Convert to polar form. $(-13 \sqrt{15}, 13 \sqrt{15})$	9. Convert to polar form (0,-2.7)
10. A vector has magnitude 8 and direction angle 136°. Write the vector in component form.	11. Find the dot product (cross product). $U=\langle 3,9>$ and $v=<6,5>$
12. Are the vectors parallel, orthogonal or neither. $U=<-2,8>\text { and } v=<16,-64>$	13. Find the magnitude and direction of the resultant vector from the diagram below.

14. If a plane is flying on a path that is coming from a bearing of 210°. Express that bearing as an angle in standard position.

15. A 10-newton force acting at 45° and a 20-newton force acting at 130° act concurrently on an object. Find the magnitude and direction of the resultant force.
16. A ship is traveling at a speed of 60 miles per hour with a bearing of 60° on the river with negligible water velocity. When the ship reaches a certain point, it encounters water flow with a velocity of 10 miles per hour in the direction $\mathrm{S} 45^{\circ} \mathrm{E}$. What are the resultant speed and direction of the ship?
17. Two people are trying to collectively push a box across a room towards the door. Person A pushes with a force of 330 newtons at a 350° from standard position. Person B pushes with a force of 300 newtons at a -150^{0} from standard position.
a. Who contributes more force towards the door?
b. By how much?
c. What is the total force contributed to push this box?
